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1 The four mirror Sagnac interferometer

Figure 1: The four mirror Sagnac interferometer

Fig.1 shows a four mirror Sagnac interferometer. The light beam from the monochromatic source must
be slightly divergent. If a laser is used, it may be necessary to place a diffuser lens in front of it. One part
of the beam from the source passes through the half silvered mirror (red arrows) and is reflected off the
three other mirrors back to the half silvered mirror. Part of the beam will pass through the half silvered
mirror and hit the screen. This beam has gone around the ring in the anticlockwise direction. Another
part of the beam from the source will be reflected off the half silvered mirror, and will be reflected around
the ring in the clockwise direction (blue arrows). Part of this beam will be reflected off the half silvered
mirror and hit the screen. The light from the two beams will form an interference pattern on the screen.
The pattern will depend on the collimation of the mirrors, but it will usually be a pattern with bright
and dark fringes. If the central parts of the two beams are in phase, there will be a bright fringe at the
centre of the screen.

When the Sagnac ring is rotating, the two beams will be slightly deflected in opposite directions. But
since the beams are divergent, they will still overlap. The parts of the beams that hit at the centre of
the screen will have hit each mirror in the centre. If these parts of the beams are out of phase, the bright
fringe will be offset to one side.

We will calculate what the Special Theory of Relativity and emission theories predict the phase difference
will be when the interferometer is rotating. By ’emission theory’ we will mean a theory where the speed
of light in vacuum is c relative to the source, and velocities transform according to the Galilean transform.
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2 Calculation of the phase difference between the beams

2.1 Methods

There are two ways of calculating this phase difference:

1. The difference in transit time ∆t for the two beams can be calculated.
The transit time is the time a plane of equal phase uses to move around the ring.
The phase difference is then ∆φ = 2πν ∆t where ν is the frequency of the light.

2. The number of wavelengths in the two beams can be compared.
The phase difference is then ∆φ = 2π∆N where ∆N is the difference
in the number of wavelengths in the two beams.

Even if the two methods necessarily must give the same result, we will calculate the predictions both
ways.

2.2 The predictions calculated with the difference in transit times

2.2.1 The geometry of the beams

Given that the centres of the mirrors are a distance r from the centre of the interferometer. The
interferometer is rotating in the anticlockwise direction with a peripheral speed v. Since all the four
parts of the beams between the mirrors will be equal, we can consider only the first part of each beam,
as shown in fig. 2.

Figure 2: The geometry of the beams
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Where :
r is the distance from the centre of the interferometer to the centre of each mirror
v is the speed of the mirrors in the non rotating inertial frame
ω is the angular velocity of the mirrors in the non rotating inertial frame, ω = v/r
ϕf is the angle of the central beam emitted in the direction of rotation
ϕb is the angle of the central beam emitted in the direction opposite to the rotation
df is the path length of the central beam emitted in the direction of the rotation
db is the path length of the central beam emitted in the direction opposite to the rotation
tf is the transit time of the central beam emitted in the direction of the rotation
tb is the transit time of the central beam emitted in the direction opposite to the rotation
θf is the angle a mirror moves during the time tf
θb is the angle a mirror moves during the time tb

We have:

df =

√
(r + r cos θf )

2
+ (r cos θf )

2
= r

√
2 (1 + sin θf )

θf = ωtf

df = r
√
2 (1 + sin (ωtf )) (1)

db =

√
(r − r cos θf )

2
+ (r cos θf )

2
= r

√
2 (1− sin θf )

θb = ωtb

db = r
√
2 (1− sin (ωtb)) (2)

cosϕf =
r + r sin (ωtf )

df
=

1 + sin (ωtf )√
2 (1 + sin (ωtf ))

=
1√
2

√
1 + sin (ωtf ) (3)

cosϕb =
r − r sin (ωtb)

db
=

1− sin (ωtb)√
2 (1− sin (ωtf ))

=
1√
2

√
1− sin (ωtb) (4)

Since the Sagnac effect is a first order effect in v/c, first order approximations will be satisfactory.

First order approximations of the above equations will be:

df ≈ r
√
2

(
1 +

ωtf
2

)
(5)

db ≈ r
√
2

(
1− ωtb

2

)
(6)

cosϕf ≈ 1√
2

(
1 +

ωtf
2

)
(7)

cosϕb ≈
1√
2

(
1− ωtb

2

)
(8)

2.2.2 Prediction of the Special Theory of Relativity

According to this theory, the speed of light is c in the non rotating inertial frame.

For the beam moving with the rotation, we have:

c tf = df
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c tf ≈
√
2 r
(
1 +

ω

2
tf

)
tf ≈

√
2 r

c− ωr√
2

(9)

For the beam moving in the opposite direction, we have:

c tb = db

c tb ≈
√
2 r
(
1− ω

2
tb

)
tb ≈

√
2 r

c+ ωr√
2

(10)

The difference in transit times will then be:

∆t = 4 (tf − tr) ≈ 4

( √
2 r

c− ωr√
2

−
√
2 r

c+ ωr√
2

)
=

8ωr2

c2
(
1− 1

2

(
ωr
c

)2)
Ignoring second order terms in ωr/c = v/c, and inserting the area enclosed by the light beams A = 2r2

yields:

∆t ≈ 4Aω

c2
(11)

According to the Special Theory of Relativisty the phase difference between the two beams is:

∆φ = 2πν∆t ≈ 8πAω

λc
(12)
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2.2.3 Prediction of emission theories

According to these theories, the speed of light is c relative to the source, and velocities transform according
to the Galilean transform. The speed of the two light beams in the non rotating inertial frame will then
be:

The beam moving with the rotation:

cf =

√
(c sinϕf )

2
+ (c cosϕf + v)

2
= c

√
1 +

2v

c
cosϕf +

v2

c2

Using equation (3), and ignoring second order terms yields:

cf ≈ c

(
1 +

ωr√
2 c

)
(13)

The beam moving in the opposite direction:

cb =

√
(c sinϕf )

2
+ (c cosϕf − v)

2
= c

√
1− 2v

c
cosϕb +

v2

c2

Using equation (4), and ignoring second order terms yields:

cb ≈ c

(
1− ωr√

2 c

)
(14)

The transit time for the beam going with the rotation:

cf tf = df

c

(
1 +

ωr√
2 c

)
tf ≈

√
2 r
(
1 +

ω

2
tf

)
tf ≈

√
2 r

c
(15)

The transit time for the beam going in the opposite direction:

cb tb = db

c

(
1− ωr√

2 c

)
tf ≈

√
2 r
(
1− ω

2
tf

)
tb ≈

√
2 r

c
(16)

The difference in transit times:
∆t = 4 (tf − tb) ≈ 0 (17)

The predicted phase difference is thus:
∆φ ≈ 0 (18)

According to emission theories, the phase difference has no first order dependency on the rotation.
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2.3 The predictions calculated by comparing number of wavelengths

2.3.1 The lengths of the beams

Fig. 3 shows an instant image of the central part of the beams, drawn in the non rotating inertial frame.
The beams are slightly curved because the different parts of the beams were emitted at different angles
as measured in the non rotating frame. The beam going with the rotation (red curve) is slightly concave,
while the beam going in the opposite direction (blue curve) is slightly convex.

We will see if the curvature of the beams has a first order influence on their lengths.

Figure 3: The shape of the beams as viewed in the non rotating frame

At the mirrors, the angles to the mirrors are ϕf and ϕb respectively, as defined in fig. 2.

Combining equation (7) and (9) or (13) gives a first order approximation of cosϕf :

cosϕf ≈ 1√
2

(
1− ωr√

2c

)
(19)

Combining equation (8) and (10) or (14) gives a first order approximation of cosϕb:

cosϕb ≈
1√
2

(
1 +

ωr√
2c

)
(20)

(It does not matter if we use the predictions of the Special Theory of Relativity, or emission theories for
tf and tb; the first order approximations above remain the same.)

Note that equations (19) and (20) show that when ω = 0, ϕf = ϕb =
π
4 .
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A first order Taylor expansion of cosϕ where ϕ = π
4 ± δ yields:

cos
(π
4
± δ
)
≈ 1√

2
(1∓ δ) (21)

Comparing (19) and (21), and (20) and (21) shows that first order approximations of the angles are:

ϕf ≈ π

4
− δ ϕb ≈

π

4
+ δ where δ =

ωr√
2c

Going back to fig.3, we will see that the curved beams must be sections of circles. We will find the lengths
of these sections.

Figure 4: The length of the curved beam

From fig. 4, we find: s = d
δ

sin δ
where d is the distance between the mirrors, d =

√
2r.

A Taylor expansion of sin δ yields sinδ ≈ δ − δ3

6
.

Hence:

s ≈ d

(
1 +

δ2

6

)
≈

√
2 r

(
1 +

1

12

(ωr
c

)2)
(22)

This shows that the curvature of the beams will not give a first order addition to their lengths.

We can thus consider the total lengths of both beams to be 4
√
2 r.
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2.3.2 Prediction of the Special Theory of Relativity

Since the source is moving in the inertial frame where the centre of the interferometer is stationary,
the wavelengths of the light in the beams will according to the Special Theory of Relativity be Doppler
shifted.

The wavelength of the light in the beam going with the rotation, measured in the non rotating frame,
will be:

λf =
1− ωr

c cosϕf√
1−

(
ωr
c

)2 λ ≈
1− ωr

c

(
1√
2

(
1− ωr√

2c

))
√
1−

(
ωr
c

)2 λ ≈
(
1− ωr√

2c

)
λ (23)

where we have ignored second and higher order terms in ωr
c .

The wavelength of the light in the beam going in the opposite direction, measured in the non rotating
frame, will be:

λb =
1 + ωr

c cosϕb√
1−

(
ωr
c

)2 λ ≈
1 + ωr

c

(
1√
2

(
1 + ωr√

2c

))
√
1−

(
ωr
c

)2 λ ≈
(
1 +

ωr√
2c

)
λ (24)

again ignored second and higher order terms in ωr
c .

The number of wavelengths in the beam going with the rotation becomes:

Nf =
4
√
2 r

λf
≈ 4

√
2 r(

1− ωr√
2c

)
λ

(25)

The number of wavelengths in the beam going in the opposite direction becomes:

Nb =
4
√
2 r

λb
≈ 4

√
2 r(

1 + ωr√
2c

)
λ

(26)

The difference in the number of wavelengths becomes:

∆N = Nf −Nb ≈
4
√
2 r(

1− ωr√
2c

)
λ
− 4

√
2 r(

1 + ωr√
2c

)
λ
=

8ωr2

λc
(
1− 1

2

(
ωr
c

)2) ≈ 8ωr2

λc
(27)

Inserting the area enclosed by the light beam, A = 2r2 yields:

∆N ≈ 4Aω

λc
(28)

The predicted phase difference is thus:

∆φ = 2π∆N ≈ 8πAω

λc
(29)

which is identical to equation (12), as it must be.
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2.3.3 Prediction of an emission theory

According to emission theories wavelengths are not Doppler shifted. This is a consequence of the Galilean
transform.

The number of wavelengths in the two beams is therefore:

Nf =
4
√
2r

λ
(30)

Nb =
4
√
2r

λ
(31)

And the difference in the number of wavelengths is:

Nf = Nf −Nb = 0 (32)

The predicted phase difference is thus:
∆φ = 0 (33)

According to the emission theories, the phase difference has no first order dependency on the rotation.

3 Conclusion

We have shown that the Special Theory of Relativity predicts the phase difference between the beams in
a rotating four mirror Sagnac ring to be

∆φ ≈ 8πAω

λc

Since this is in accordance with experimental evidence within the precision of the measurement, the
Sagnac experiment confirms the Special Theory of Relativity.

We have shown that emission theories predict that the phase difference between the beams in a rotating
four mirror Sagnac ring has no first order dependency on the angular velocity, while experimental evidence
show that the dependency is given by the equation above, the Sagnac experiment falsifies emission
theories.
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