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1 Introduction

A fibre-optic gyroscope (FOG) is basically a coil of optic fibre where the light from a monochromatic
light source is injected via a beam splitter into both ends of the fibre, such that there are two light beams
going in opposite direction within the fibre. When the light beams are coming out of the ends of the fibre,
they are led into a phase comparator which measure the phase difference between the light in the two
beams. Due to the Sagnac effect, this phase difference will vary proportionally to the angular velocity of
the FOG.

The commonly used equation for this phase difference is:

∆φ =
8πNAω

λc
(1)

where N is the number of turns in the coil, A is the area enclosed by the coil, λ is the wavelength of the
light from the source in vacuum, c is the speed of light in vacuum, and ω is the angular velocity with
which the FOG is rotating.

This equation is experimentally very well confirmed.

It is rather remarkable that according to this equation, the phase difference does not depend on the
index of refraction n of the fibre. Intuitively one might expect that since the speed of light in the fibre
is inversely proportional to n, the phase difference would show a similar dependency on n. Experimental
evidence show that this is not the case.

We will calculate what the Special Theory of Relativity predicts the phase difference will be between the
contra moving light beams in a rotating FOG, and we will see that according to this theory, the phase
difference is indeed independent of the index of refraction in the fibre.
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2 Calculation of the phase difference between the two beams

2.1 Methods

There are two ways of calculating this phase difference:

1. The difference in transit time ∆t for the two beams can be calculated.
The transit time is the time a plane of equal phase uses to move around the ring.
The phase difference is then ∆φ = 2πν ∆t where ν is the frequency of the light.

2. The number of wavelengths in the two beams can be compared.
The phase difference is then ∆φ = 2π∆N where ∆N is the difference
in the number of wavelengths in the two beams.

Even if the two methods necessarily must give the same result, we will calculate the predictions both
ways.

2.2 The Fibre Optic Gyro

We will assume that our idealized FOG has the following parameters:

• Let the fibre be a single circular loop with radius r.
• Let the peripheral speed of the fibre be v as measured in the inertial frame where

the centre of the ring is stationary.
• Let n be the index of refraction in the fibre.
• Let c be the speed of light in vacuum.

2.3 The prediction calculated with the difference in transit times

At any point on the fibre, the speed of light will be c/n as measured in an instantly co-moving inertial
frame. We will transform this speed to the non-rotating inertial frame where the fibre is moving at the
speed v, using the well known formula which follows from the Lorentz transform:

The beam going with the rotation:

cf =
c
n + v

1 +
c
nv

c2

=
c2 + nvc

nc+ v
(2)

The beam going in the opposite direction:

cb =
c
n − v

1−
c
n v

c2

=
c2 − nvc

nc− v
(3)

The time tf to go around the circular loop with radius r is for the beam going with the rotation:

tf cf = 2πr + v tf (4)

tf =
2πr

cf − v
=

2πr
c2+nvc
nc+v − v

= 2πr

(
nc+ v

c2 − v2

)
(5)

The time tb to go around the circular loop with radius r is for the beam going in the opposite direction:

tb cb = 2πr − v tb (6)
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tb =
2πr

cb + v
=

2πr
c2−nvc
nc−v + v

= 2πr

(
nc− v

c2 − v2

)
(7)

The difference in the transit times ∆t is:

∆t = tf − tb = 2πr

(
nc+ v

c2 − v2
− nc− v

c2 − v2

)
=

4πrv

c2 − v2
(8)

Note the rather remarkable result that although the transit times are approximately proportional to the
index of refraction n, the difference in transit times is not affected by n at all.

∆t is the transit time measured in the non-rotating inertial frame where the centre of the loop is stationary.
The phase detector is co-located with the source, and is moving along with it at the speed v. So the
transit time as measured by the moving source/detector, will be:

∆t′ = ∆t

√
1−

(v
c

)2

=
4πrv

c2 − v2

√
1−

(v
c

)2

=
4πrv

c2
√
1−

(
v
c

)2 (9)

The phase difference as measured by the moving phase detector will thus be:

∆φ = 2πν∆t′ =
2πc∆t′

λ
=

8π2rv

λc

√
1−

(
v
c

)2 (10)

where λ is the wavelength of the light in vacuum.

Ignoring second order terms in v/c, and inserting the area A of the loop and its angular velocity ω = v/r,
yields:

∆φ ≃ 8πAω

λc
(11)

This is consistent with the experimentally verified equation (1) for a FOG.

2.4 The prediction calculated by comparing number of wavelengths

• Let ν be the frequency of the light source as measured in an instantly co-moving inertial frame.
• Let λ be the wavelength in vacuum of light with frequency ν, λ = c/ν.
• Let νf and λf be the frequency and wavelength of the beam that is moving with the rotation,

as measured in the inertial frame where the centre of the ring is stationary.
• Let νb and λb be the frequency and wavelength of the beam that is moving in the opposite direction,

as measured in the inertial frame where the centre of the ring is stationary.

Since the source is moving, the frequency of the beam going with the rotation will be Doppler shifted in
the inertial frame where the centre of the ring is stationary:

νf =

√
1−

(
v
c

)2
1− v

cf

ν =
cf

√
1−

(
v
c

)2
cf − v

c

λ
(12)

We have cf from equation (2), and get:

νf =

(
c2+nvc
nc+v

)√
1−

(
v
c

)2(
c2+nvc
nc+v

)
− v

c

λ
=

c+ nv

λ

√
1−

(
v
c

)2 (13)
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The wavelength of the light in the beam going with the rotation will then be:

λf =
cf
νf

=

(
c2+nvc
nc+v

)
c+nv

λ
√

1−( v
c )

2

=
c

√
1−

(
v
c

)2
nc+ v

λ (14)

Equivalently will the beam going in the opposite direction be Doppler shifted:

νb =

√
1−

(
v
c

)2
1 + v

cb

ν =
cb

√
1−

(
v
c

)2
cb + v

c

λ
(15)

We have cb from equation (3), and get:

νb =

(
c2−nvc
nc−v

)√
1−

(
v
c

)2(
c2−nvc
nc−v

)
+ v

c

λ
=

c− nv

λ

√
1−

(
v
c

)2 (16)

The wavelength of the light in the beam going in the opposite direction will then be:

λb =
cb
νb

=

(
c2−nvc
nc−v

)
c−nv

λ
√

1−( v
c )

2

=
c

√
1−

(
v
c

)2
nc− v

λ (17)

The number of wavelengths in the beams will be:

Nf =
2πr

λf
=

2πr (nc+ v)

λc

√
1−

(
v
c

)2 (18)

Nb =
2πr

λb
=

2πr (nc− v)

λc

√
1−

(
v
c

)2 (19)

The difference in the number of wavelengths will be:

∆N = Nf −Nb =
4πrv

λc

√
1−

(
v
c

)2 (20)

Note the rather remarkable result that although the numbers of wavelengths are approximately pro-
portional to the index of refraction n, the difference in number of wavelengths is not affected by n at
all.

The phase difference between the beams will thus be:

∆φ = 2π∆N =
8π2rv

λc

√
1−

(
v
c

)2 (21)

This phase difference is identical to the one in equation (4). So both methods give the same result, as
they must.

Ignoring second order terms in v/c, and inserting the area A of the loop and its angular velocity ω = v/r,
yields:

∆φ ≃ 8πAω

λc
(22)

which obviously is identical to equation (11).
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3 Conclusion

We have shown that the Special Theory of Relativity predicts that the phase difference between the
contra-moving light beams in a FOG is:

∆φ =
8πAω

λc

√
1−

(
ωr
c

)2
which within any practically possible precision of measurement is consistent with the experimentally
verified equation:

∆φ =
8πAω

λc

The fact that in accordance with experimental evidence, no dependency on the index of refraction in the
fibre is predicted, is yet another confirmation of the Special Theory of Relativity.

5


