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1 Spacetime interval and proper time
The metric equation is generally:
ds? = g, dztdz” (1)

This is a differential equation. To find the spacetime interval s between two events, one
must integrate (1) over a path in spacetime between the events.

When s? is positive, the spacetime interval is space-like, when s? is negative, the spacetime
interval is time-like. The interval between two events on the worldline of an object will
always be time-like, in which case we will call the interval the proper time of the object.

The differential equation for the proper time can then be written:
dr? = —gudatda” (2)

In flat spacetime the metric tensor is:
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And the equation becomes:
(dT)2 = (dx0)2 - (dxl)2 - (dxz)2 - (d:zc‘g)2 (4)
Alternatively:
(c-dr)? = (c-dt)? - da? - dy? - d2? (5)

Where 7 is the proper time of some object, while [t,z,y,z] are the coordinates of an
inertial frame of reference I, and c is the speed of light in vacuum.

If we use the coordinate time ¢ as parameter, the equation can be written:
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Which can be simplified to:

2
d¢=\/1——”(? dt (7)
C
where 3 (1) > (%, %, %) and v() =5 (1) - 0(1) = (%) + () + (%)"

The proper time between two events on the object’s world line will be:

7':—/‘\/1%?2 dt (8)

Note that v (t) may be any function of ¢.

2 The twin ’paradox’

2.1 General scenario

Given an inertial frame K with coordinates [t,z,y, z].

Twin A stays stationary at x = 0 in K, while twin B starts from x = 0 when A’s clock
shows 0 and travels to some point x = L, where she turns around and travels back to
x = 0. She is back at the time T as measured in K. Since twin A is stationary in X, her
proper time when twin B is back will be 74 =T

2.2 B travels with constant speed and instant acceleration

We will assume that twin B travels at the constant speed v and turns abruptly around
with a brief, very high acceleration a for a very short time At such that AlitmO (aAt) = 2v

and thereafter travels back at the constant speed v.

There are three events of interest. The coordinates of these events in I are:

Start Fy: t=0, x =0, y=0, z2=0
T T
B turns around FEj : tza, :172%, y =0, z=0

Bis back Fy: t=T, x =0, y =0, z=0

The proper times of the twins between the events Ey and E, will be:
Twin A:

TAZIOTdtZT (9)

Twin B:
V2 12
TB_f 1——dt+/ -G de=T 1-— (10)
Thus:
02
TB =TA 1_0_2 (11)



2.3 B travels with constant acceleration

Twin B starts from a standstill at the event FEj p (0,0,0,0) and accelerates away with
the constant proper acceleration a until the event E; 2 (t1,71,0,0) when she reverses

the direction of the acceleration and accelerates towards the starting point with constant
proper acceleration with magnitude a. At the event F, P (ta2, L,0,0) she will be stationary

in K, and starts moving towards the starting point. At the event FEj 2 (t3,23,0,0)

she reverses the direction of acceleration, and accelerates away from the starting point
(brakes). She is stationary at the starting point at the event E, p (7,0,0,0).

Symmetry makes it obvious that ¢; = }lT, ty = %T, t3 = %T and z; = 23 = %L.

Let the mass of twin B be m. Let K’ with coordinates [z/,y’, z’,t'] be the momentarily
co-moving inertial frame of twin B. The z’-axis of K’ is aligned with the x-axis of K, and
K’ is moving at the speed v in K.

Since the accelerating force F' must be in the same direction as the velocity of K’ in I,

the accelerating force must be the same in both frames of reference. The consequence of
this is:

dp dp’

dt — dt’

Where p is the momentum of twin B in K and p’ is the momentum in £’. We have

mo_ and & = ma, where v is the speed of twin B along the z-axis of K and a is the

b= at’
=

proper acceleration of twin B.

(12)

Thus:
d v (t)
m—| ——|=ma (13)
dt /1 B 1,(6%)2
Twin B is accelerating outwards to %, 0<t< %

We have v (0) = 0:
t
&:[ adt = at, (14)
0

Solving this equation with respect to v yields:
t
v (t) = —— (15)
L+ (%)

The position x(t) of twin B in K when z(0) =0 is:

x(t):fotv(t)dt:%z( 1+(%t)2_1) (16)
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Solving this equation with respect to 1" yields:

2
T=2 L—2 + AL
c a
From equation (7), we have:
drp _ ! v(t)2 1
- -—r =
dt c 1+ (%t)2
Since 75(0) = 0, we have:
¢
dt .
5 (t) = —— = arsinh (—)
0 1+(2)” ¢ ¢

Twin B is braking to L, and then accelerating towards %, % <t< %

We have v (%) =0:

t T
&:[ —adt:a(——t)
Vit I3 2

Solving this equation with respect to v yields:

(17)

(23)



From equation (7), we have:

drp /1_11(15)2_ 1
dt - 02 N T

We have:

75 (t)= dt +Tp (%) = - larsmh(

~
—_
+
—_
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(T)—zcarsinh(aT)
B 2] a 4e
(ST) 3c . (aT)
5| = |==arsinh|{—
4 a 4e

Twin B is braking to the starting point, gT <t<T

We have v (T") = 0:

()
1 _ U(t)

fadt—a(t T)

Solving this equation with respect to v yields:
a(t-T)
v(t)= :
1+ (a(th))

[

The position of twin B in K is:

) csamsion (47

4

z(t) = [U(t dt+m(34T) f(\ll+(M)21)

z (1) =

From equation (7), we have:
drg _ [, _v(®” _ 1
dt CQ 14 (a(t;T) )2

We have:

t
5 ()= dt +Tp (g) = E[arsinh(M)+4arsinh(£)]

2 4 a c 4c

4 . T
5(T) = 70 arsinh (Z—C)
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(30)

(31)

(32)



Summing up

The speed:
0 () = ogs%
L+ (%)
a(g -t T T
v (t) = (5-1) . Z<t§3f
(a(?—t))
1+ -
t-T
v (t) o ) - -T<t<T
The position:
c? at\? T
t)=— 1+(—) -1 0<t<—
() a +(c) ) 4

' 2
2 T\ a(g -t T T
s =12 1+(“—) e (1) 1 L3t
a c c 4 4

2 | T-1)\
r(t)=< \|1+(M) 1) ST<t<T
a c
The rate of twin B’s clock as observed by twin A:
ddTB - - 0<t<t
ERVARN(D )
dTB 1 T 3T
—<t<—
dt (Z-1)\2 4 4
1+ (a - )
1
dthB - : ZT<t§T
The proper time of twin B’s clock :
) t T
T (t) = E8u"smh(a—) 0<t<—
a c 4
o fa(t-% : T T T
g (t)= £ larsinh M +2arsmh(a—) —<t§3—
a c 4c 4 4
) t-T . T 3
5 (t)= E[arsmh(M)Jrzlarsmh(a—)] “T<t<T
a c dc 4

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)



2.4 Concrete example

We will use the following units:

distance: light year [ly]

time: year [v]

speed: light year per year [&]
[

QS =
| S— )

acceleration: speed per year

We will calculate the twin 'paradox’ scenario in chapter 2.2 with L = 101y and

a=cperyear:1;—y2.
[L? AL
T'=2\/—+—=23.6064y
c a

Using these numbers in equations (38),(39) and (40) and gives the following speed of
twin B as a function of the time:

Equation (18) gives:
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Figure 1: The speed of twin B in K




Equations (41),(42) and (43) give the following position of twin B as a function of the
time:

Tx[1y]

T =23.664y

iyl |
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Figure 2: The position of twin B in K

Equations (44),(45) and (46) give the following rate of twin B’s clock as observed by
twin A, as a function of the time:
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Figure 3: The rate of twin B’s clock as observed by twin A.




Equations (47),(48) and (49) give the proper time of twin B as a function of the time in
K.
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Figure 4: The proper time of twin B as a function of the time in K




3 A twin ’paradox’ simulation
On my homepage https://paulba.no/ you will find a twin paradox simulation:

Run the twin ’paradox’ simulation

The figure below is a picture of the screen when this simulation is run with the same
parameters as in chapter 2.4.

Acceleration distance [LY] Acceleration [c per year] :
s gy | Iy T

Relative rate of B's clock as observed by A, dtBfdtA = 1.0000 Velocity of B as observed by A = 0.0000 ¢
[rate] & dtB/atd [c] $B-velocity

1.0

0.0 -1.00

11.63 14.79 17.75 23,

0.
Burning: Burning:

Clock B as observed by A = 9.91 years Acceleration of B as ohserved by A = 1.000 ofy
B-time acceleration

0.00 -1.00
o 0.

.00 2,96 5.9z & 11.83 14.79 17.75

Burning: Burning:

Figure 5: A run of the twin paradox simulation with parameters as in chapter 2./

Compare this to the figures in chapter 2.4.
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