An illustration of mutual time dilation

Paul B. Andersen

June 16, 2008

The scenario

- Let's have two clocks which are synchronized according to Einstein's procedure in each of two inertial frames of reference.
- Let the clocks be a proper distance d from each other in their respective frames.
- Let the frames move with the relative speed v.

Figure 1: The frames of reference
There are three events of interest:

Event $\boldsymbol{E}_{\mathbf{1}}$: clock A and clock A^{\prime} are adjacent
Event $\boldsymbol{E}_{\mathbf{2}}$: clock A and clock B^{\prime} are adjacent
Event $\boldsymbol{E}_{\mathbf{3}}$: clock B and clock A^{\prime} are adjacent

Calculation of what the clocks will show at the events

Event $\boldsymbol{E}_{\mathbf{1}}$:

A shows $t_{1}=0, A^{\prime}$ shows $t_{1}^{\prime}=0$ (the clocks are set thus)
Event \boldsymbol{E}_{2} :
In frame K^{\prime}, A will be at the position $-d$ when B^{\prime} shows $t_{2}^{\prime}=\frac{d}{v}$
According to the Lorentz transform, A shows:

$$
\begin{equation*}
t_{2}=\frac{\frac{d}{v}+\frac{-d v}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{d}{v} \sqrt{1-\frac{v^{2}}{c^{2}}} \tag{1}
\end{equation*}
$$

Event \boldsymbol{E}_{3} :

In frame K, A^{\prime} will be at the position d when B shows $t_{3}=\frac{d}{v}$
According to the Lorentz transform, A^{\prime} shows:

$$
\begin{equation*}
t_{3}^{\prime}=\frac{\frac{d}{v}-\frac{d v}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{d}{v} \sqrt{1-\frac{v^{2}}{c^{2}}} \tag{2}
\end{equation*}
$$

Summing up, the readings of the clocks will be:
At event $E_{1}: \quad A$ shows $t_{1}=0 \quad A^{\prime}$ shows $t_{1}^{\prime}=0$
At event $E_{2}: \quad A$ shows $t_{2}=\frac{d}{v} \sqrt{1-\frac{v^{2}}{c^{2}}} \quad B^{\prime}$ shows $t_{2}^{\prime}=\frac{d}{v}$
At event $E_{3}: \quad B$ shows $t_{3}=\frac{d}{v} \quad \quad A^{\prime}$ shows $t_{3}^{\prime}=\frac{d}{v} \sqrt{1-\frac{v^{2}}{c^{2}}}$

The symmetry is obvious.

Which clock is running slow or fast relative to which?

The answer depends on how the clocks are compared!
In frame K we can measure the rate $\frac{\mathrm{d} t^{\prime}}{\mathrm{d} t}$ of the moving clock A^{\prime} by comparing the reading of A^{\prime} with the readings of the two clocks A and B as it passes them:

$$
\begin{equation*}
\frac{\mathrm{d} t^{\prime}}{\mathrm{d} t}=\frac{\left(t_{3}^{\prime}-t_{1}^{\prime}\right)}{\left(t_{3}-t_{1}\right)}=\sqrt{1-\frac{v^{2}}{c^{2}}} \tag{3}
\end{equation*}
$$

Conclusion \#1: Clock A^{\prime} runs slow as observed in frame K

In frame K^{\prime} we can measure the rate $\frac{\mathrm{d} t}{\mathrm{~d} t^{\prime}}$ of the moving clock A by comparing the reading of A with the readings of the two clocks A^{\prime} and B^{\prime} as it passes them:

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} t^{\prime}}=\frac{\left(t_{2}-t_{1}\right)}{\left(t_{2}^{\prime}-t_{1}^{\prime}\right)}=\sqrt{1-\frac{v^{2}}{c^{2}}} \tag{4}
\end{equation*}
$$

Conclusion \#2: Clock A runs slow as observed in frame K^{\prime}

This is what is meant by mutual time dilation.
Conclusion \#1 does not contradict conclusion \#2 because the temporal interval between different sets of events are compared.

But we can draw more conclusions

We can measure the rate R^{\prime} at which an observer in K^{\prime} will see the co-ordinate time of K runs by reading the clocks A and B as they pass clock A^{\prime} :

$$
\begin{equation*}
R^{\prime}=\frac{\left(t_{3}-t_{1}\right)}{\left(t_{3}^{\prime}-t_{1}^{\prime}\right)}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{5}
\end{equation*}
$$

Conclusion \#3: The co-ordinate time of frame K runs fast as observed in frame K^{\prime}

We can measure the rate R at which an observer in K will see the co-ordinate time of K^{\prime} runs by reading the clocks A^{\prime} and B^{\prime} as they pass clock A :

$$
\begin{equation*}
R=\frac{\left(t_{2}^{\prime}-t_{1}^{\prime}\right)}{\left(t_{2}-t_{1}\right)}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{6}
\end{equation*}
$$

Conclusion \#4: The co-ordinate time of frame K^{\prime} runs fast as observed in frame K

There is nothing contradictory between conclusion \#3 and \#4 either.
It is in fact conclusions $\# 1$ and $\# 3$ and conclusions $\# 2$ and $\# 4$ respectively that compare the temporal interval between the same sets of events.

