A Hafele \& Keating like thought experiment

Paul B. Andersen

October 16, 2008

1 Introduction

This is a calculation of what The General Theory of Relativity predicts for an idealized experiment, similar to the Hafele \& Keating experiment.

J.C.Hafele \& R.E.Keating: Around-the-World Atomic Clocks ${ }^{\text {T }}$

2 The thought experiment

Given three clocks, A, B and C. Clock A is stationary on the ground at equator, while clock B and C are flown in aeroplanes at constant altitude and ground speed in opposite directions around the Earth at equator. At some instant, the clocks are co-located when they all are set to zero. When clock B and C have flown once around the Earth and again are co-located, they are compared to clock A.

3 The proper time of a clock circling the Earth

The Schwarzschild metric is used to find the proper time of clocks in the vicinity of the Earth:

$$
\begin{equation*}
c^{2} \mathrm{~d} \tau^{2}=\left(1-\frac{2 G M}{c^{2} r}\right) c^{2} \mathrm{~d} t^{2}-\frac{1}{\left(1-\frac{2 G M}{c^{2} r}\right)} \mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right) \tag{1}
\end{equation*}
$$

where:
$\boldsymbol{\tau}$ is the proper time
\boldsymbol{t} is the Schwarzschild temporal coordinate
\boldsymbol{r} is the Schwarzschild radial coordinate
$\boldsymbol{\theta}$ is the colatitude (angle from north)
φ is the longitude
\boldsymbol{G} is the gravitational constant
\boldsymbol{M} is the mass of the Earth
c is the speed of light in vacuum

If we assume that the trajectory of the clock is a circle in the equatorial plane, and its speed as measured in the Schwarzschild frame of reference is v, then we can set $\mathrm{d} r=0, \mathrm{~d} \theta=0, \theta=\frac{\pi}{2}$ and $r \mathrm{~d} \varphi=v \mathrm{~d} t$

Thus:

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\left(1-\frac{2 G M}{c^{2} r}-\frac{v^{2}}{c^{2}}\right) \mathrm{d} t^{2} \tag{2}
\end{equation*}
$$

or:

$$
\begin{equation*}
\mathrm{d} \tau=\sqrt{1-\frac{2 G M}{c^{2} r}-\frac{v^{2}}{c^{2}}} \mathrm{~d} t \tag{3}
\end{equation*}
$$

A first order approximation is:

$$
\begin{equation*}
\mathrm{d} \tau=\left(1-\frac{G M}{c^{2} r}-\frac{v^{2}}{2 c^{2}}\right) \mathrm{d} t \tag{4}
\end{equation*}
$$

Assuming r and v are constants and integrating:

$$
\begin{equation*}
\tau=\left(1-\frac{G M}{c^{2} r}-\frac{v^{2}}{2 c^{2}}\right) t+\tau(0) \tag{5}
\end{equation*}
$$

The Schwarzschild coordinate time t is however a theoretical time shown by no clock, so an equation comparing the proper times of two clocks is more interesting. If we have one clock with proper time τ_{1}, going with speed v_{1} at radial distance r_{1}, and another clock with proper time τ_{2}, going with speed v_{2} at radial distance r_{2}, we can write:

$$
\begin{align*}
& \mathrm{d} \tau_{1}=\left(1-\frac{G M}{c^{2} r_{1}}-\frac{v_{1}^{2}}{2 c^{2}}\right) \mathrm{d} t \tag{6}\\
& \mathrm{~d} \tau_{2}=\left(1-\frac{G M}{c^{2} r_{2}}-\frac{v_{2}^{2}}{2 c^{2}}\right) \mathrm{d} t \tag{7}
\end{align*}
$$

Combining these, we find:

$$
\begin{equation*}
\mathrm{d} \tau_{2}=\left(\frac{1-\frac{G M}{c^{2} r_{2}}-\frac{v_{2}^{2}}{2 c^{2}}}{1-\frac{G M}{c^{2} r_{1}}-\frac{v_{1}^{1}}{2 c^{2}}}\right) \mathrm{d} \tau_{1} \simeq\left(1+\frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}\right) \mathrm{d} \tau_{1} \tag{8}
\end{equation*}
$$

Assuming that $\tau_{2}=0$ when $\tau_{1}=0$ and integrating:

$$
\begin{equation*}
\tau_{2} \simeq\left(1+\frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}\right) \tau_{1} \tag{9}
\end{equation*}
$$

The difference between the proper times of the clocks will then be:

$$
\begin{equation*}
\tau_{2}-\tau_{1}=\left(\frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}\right) \tau_{1} \tag{10}
\end{equation*}
$$

In the special case when the first clock is at the geoid, r_{1} is the radius of the Earth R. If h is the altitude of the second clock, we can write:

$$
\begin{equation*}
\tau_{2}-\tau_{1}=\left(\frac{G M}{c^{2}}\left(\frac{1}{R}-\frac{1}{R+h}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}\right) \tau_{1} \tag{11}
\end{equation*}
$$

If we assume that $\frac{h}{R} \ll 1$ and insert the gravitational acceleration at the geoid $g=\frac{G M}{R^{2}}$, the equation can be simplified to:

$$
\begin{equation*}
\tau_{2}-\tau_{1}=\left(\frac{g h}{c^{2}}+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}\right) \tau_{1} \tag{12}
\end{equation*}
$$

4 Calculation of the proper times of the clocks in the thought experiment

From equation (12) we have:

$$
\begin{equation*}
\tau_{B}-\tau_{A}=\left(\frac{g h_{B}}{c^{2}}+\frac{v_{A}^{2}-v_{B}^{2}}{2 c^{2}}\right) \tau_{A} \tag{13}
\end{equation*}
$$

and:

$$
\begin{equation*}
\tau_{C}-\tau_{A}=\left(\frac{g h_{C}}{c^{2}}+\frac{v_{A}^{2}-v_{C}^{2}}{2 c^{2}}\right) \tau_{A} \tag{14}
\end{equation*}
$$

Where τ_{A} and v_{A} are respectively the proper time and the speed of the ground clock A , τ_{B}, v_{B} and h_{B} are respectively the proper time, speed and altitude of the west going clock B , and τ_{C}, v_{C} and h_{C} are respectively the proper time, speed and altitude of the east going clock C .

The speeds are here referred to the non-rotating Earth centred frame of reference.
Let's suppose the ground speeds of both the aeroplanes are $232.55 \mathrm{~m} / \mathrm{s}$, and their altitude is 9000 m . Since the speed of the aeroplanes is half the peripheral velocity of the Earth, they will use two sidereal days on the journey around the Earth, that is $\tau_{A}=$ two sidereal days. These speeds and altitudes are reasonable for commercial aeroplanes, and are close to the speeds and altitudes of the aeroplanes in the Hafele \& Keating experiment. We will assume the aeroplanes are flying non stop, though, which obviously was not the case in the $\mathrm{H} \& \mathrm{~K}$ experiment.

We can now sum up the data for the clocks:

Speed of ground clock A:
Speed of west going clock B:
Speed of east going clock C:
Altitude of clock B:
Altitude of clock C:
The proper time of clock A:
Gravitational acceleration:

$$
\begin{aligned}
v_{A} & =465.1 \mathrm{~m} / \mathrm{s} \\
v_{B} & =v_{A}-232.55 \mathrm{~m} / \mathrm{s}=232.55 \mathrm{~m} / \mathrm{s} \\
v_{C} & =v_{A}+232.55 \mathrm{~m} / \mathrm{s}=697.65 \mathrm{~m} / \mathrm{s} \\
h_{B} & =9000 \mathrm{~m} \\
h_{C} & =9000 \mathrm{~m} \\
\tau_{A} & =172320 \text { seconds } \\
g & =9.800 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Inserting these data into equations (13) and (14) yields:
$\tau_{B}-\tau_{A}=325 \mathrm{~ns}$, the west going clock gains 325 ns on the ground clock. (H\&K 273 ns) $\tau_{C}-\tau_{A}=-90 \mathrm{~ns}$, the east going clock loses 90 ns on the ground clock. (H\&K 59 ns)

