The rate of clocks in GPS orbit compared to clocks on the geoid

Paul B. Andersen

November 8, 2010

The Schwarzschild metric is:

$$
\begin{equation*}
c^{2} \mathrm{~d} \tau^{2}=\left(1-\frac{2 G M}{c^{2} r}\right) c^{2} \mathrm{~d} t^{2}-\frac{1}{\left(1-\frac{2 G M}{c^{2} r}\right)} \mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right) \tag{1}
\end{equation*}
$$

where:
$\boldsymbol{\tau}$ is the proper time
\boldsymbol{t} is the Schwarzschild temporal coordinate
\boldsymbol{r} is the Schwarzschild radial coordinate
$\boldsymbol{\theta}$ is the colatitude (angle from north)
φ is the longitude
G is the gravitational constant
\boldsymbol{M} is the mass of the Earth in kilograms
\boldsymbol{c} is the speed of light in vacuum

If we assume that the trajectory of the clock is a circle in the equatorial plane, and its speed as measured in the Schwarzschild frame of reference is v, then we can set $\mathrm{d} r=0, \mathrm{~d} \theta=0, \theta=\frac{\pi}{2}$ and $r \mathrm{~d} \varphi=v \mathrm{~d} t$

Thus:

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\left(1-\frac{2 G M}{c^{2} r}-\frac{v^{2}}{c^{2}}\right) \mathrm{d} t^{2} \tag{2}
\end{equation*}
$$

or:

$$
\begin{equation*}
\mathrm{d} \tau=\sqrt{1-\frac{2 G M}{c^{2} r}-\frac{v^{2}}{c^{2}}} \mathrm{~d} t \tag{3}
\end{equation*}
$$

A first order approximation is:

$$
\begin{equation*}
\mathrm{d} \tau \simeq\left(1-\frac{G M}{c^{2} r}-\frac{v^{2}}{2 c^{2}}\right) \mathrm{d} t \tag{4}
\end{equation*}
$$

So the rate of a clock measured in Schwarzschild coordinate time is:

$$
\begin{equation*}
\frac{\mathrm{d} \tau}{\mathrm{~d} t} \simeq\left(1-\frac{G M}{c^{2} r}-\frac{v^{2}}{2 c^{2}}\right) \tag{5}
\end{equation*}
$$

For a clock on the ground we get:

$$
\begin{equation*}
\frac{\mathrm{d} \tau_{1}}{\mathrm{~d} t} \simeq\left(1-\frac{G M}{c^{2} r_{1}}-\frac{v_{1}^{2}}{2 c^{2}}\right) \tag{6}
\end{equation*}
$$

and for the satellite clock:

$$
\begin{equation*}
\frac{\mathrm{d} \tau_{2}}{\mathrm{~d} t} \simeq\left(1-\frac{G M}{c^{2} r_{2}}-\frac{v_{2}^{2}}{2 c^{2}}\right) \tag{7}
\end{equation*}
$$

where:
\boldsymbol{r}_{1} is the radius of the Earth
\boldsymbol{r}_{2} is the radius of the orbiting clock's orbit
\boldsymbol{v}_{1} is the speed of the Earth clock in the Schwarzschild (ECI) frame
\boldsymbol{v}_{2} is the speed of the orbiting clock in the Schwarzschild frame
The rate of a clock in circular orbit compared to a clock at the surface of the Earth is to a first order approximation:

$$
\begin{equation*}
\frac{\mathrm{d} \tau_{2}}{\mathrm{~d} \tau_{1}}=\frac{1-\frac{G M}{c^{2} r_{2}}-\frac{v_{2}^{2}}{2 c^{2}}}{1-\frac{G M}{c^{2} r_{1}}-\frac{v_{1}^{2}}{2 c^{2}}} \simeq 1+\frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}} \tag{8}
\end{equation*}
$$

And the relative rate difference will be:

$$
\begin{equation*}
\frac{\mathrm{d} \tau_{2}}{\mathrm{~d} \tau_{1}}-1 \simeq \frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}} \tag{9}
\end{equation*}
$$

We use the following data:

Gravitational constant $G=6.67384 \cdot 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Mass of the Earth $M=5.97219 \cdot 10^{24} \mathrm{~kg}$
Speed of light in vacuum $c=299792458 \mathrm{~m} / \mathrm{s}$
Sidereal day $=86164 \mathrm{~s}$
Orbital period of GPS satellite $=$ half sidereal day $=43082 \mathrm{~s}$
Radius of the Earth $r_{1}=6.378 \cdot 10^{6} \mathrm{~m}$
Radius of GPS orbit $r_{2}=26.56 \cdot 10^{6} \mathrm{~m}$
Speed of ground clock $v_{1}=\frac{2 \pi r_{1}}{86164 \mathrm{~s}}=465.09 \mathrm{~m} / \mathrm{s}$
Speed of satellite $v_{2}=\frac{2 \pi r_{2}}{43082 \mathrm{~s}}=3873.57 \mathrm{~m} / \mathrm{s}$

Inserting these numbers, we find that what we loosely could call the "time dilation factor" due to gravitation is:

$$
\begin{equation*}
\frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)=5.2867 \cdot 10^{-10} \tag{10}
\end{equation*}
$$

which is equivalent to $45.55 \mu s$ per sidereal day.
The "time dilation factor" due to the velocities will be:

$$
\begin{equation*}
\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}=-8.2271 \cdot 10^{-11} \tag{11}
\end{equation*}
$$

which is equivalent to $-7.09 \mu s$ per sidereal day.
The relative rate difference will be:

$$
\begin{equation*}
\frac{\mathrm{d} \tau_{2}}{\mathrm{~d} \tau_{1}}-1 \simeq \frac{G M}{c^{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{v_{1}^{2}-v_{2}^{2}}{2 c^{2}}=4.4640 \cdot 10^{-10} \tag{12}
\end{equation*}
$$

which is equivalent to $38.46 \mu s$ per sidereal day.
The correct number for the relative rate difference should be $4.4647 \cdot 10^{-10}$. The discrepancy is mainly due to the oblateness of the Earth, which I have not considered.

For a more rigorous derivation see:
Neil Ashby: Relativity in the Global Positioning System ${ }^{\text {T }}$

