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Pat Dolan’s question

On April 6, 2020, Pat Dolan posted the following question in the Usenet group sci.physics.relativity:

”A distant observer is traveling at .9c relative to the solar system along
the line that is collinear with the sun’s axis of rotation. As the clockwork
solar system spins beneath the observer he/she observes the earth following an
elliptical path around the sun. How much time does the observer measure on
his/her wristwatch for the earth to complete 2pi radians on the aforementioned
path?”

Answer when the curvature of space-time is ignored

When gravitation is ignored, we can apply the Special Theory Of Relativity (SR).

The question can be interpreted in at least three different ways, all of them trivially simple.

A ”year” is defined as the time it takes for Earth to orbit the Sun once, as measured on
the Earth. So year = 31558149.76 seconds.

Interpretation #1:

The orbiting Earth is a clock which is visually observed by the observer. This clock is
approaching the observer with the speed 0.9c.

The observer will the measure one orbit of the Earth to last a time τ on his wristwatch:

τ =

√(
1− v

c

)(
1 + v

c

) year = 0.229416 year (1)
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Interpretation #2:

The observer is stationary in a frame of reference. The orbiting Earth is a clock which is
moving at 0.9c in the observer’s rest frame.

The duration of one Earth orbit measured in the observer’s frame will then be:

t =
1√

1− v2

c2

year = 2.294157 year (2)

Interpretation #3:

The observer is moving at 0.9c in the Solar frame. The proper time of the observer’s
wristwatch will advance a time τ while one year passes as measured in the solar frame.

τ =

√
1− v2

c2
year = 0.43588989 year (3)

Answer when the curvature of space-time is considered

A spaceship is moving at the speed v towards the Sun. The proper time of the spaceship’s
clock will advance a time τ while one year passes as measured in the solar frame.

In this case we must use The General Theory of Relativity (GR), which makes the prob-
lem much more interesting. We will use Schwarzschild coordinates as coordinate system
in the solar frame.

The Schwarzschild metric is:

c2dτ 2 =

(
1− 2GM

c2r

)
c2dt2 − 1(

1− 2GM
c2r

)dr2 − r2
(
dθ2 + sin2 θ dφ2

)
(4)

where:

τ is the proper time
t is the Schwarzschild temporal coordinate
r is the Schwarzschild radial coordinate
θ is the colatitude (angle from north)
φ is the longitude
G is the gravitational constant
M is the mass of the Sun
c is the speed of light in vacuum

We will first calculate the Schwarzschild time it takes for the Earth to orbit the Sun once.
A clock is at the North pole of the Earth. If we assume that the trajectory of the clock
is a circle with radius r = 1 AU in the ecliptic plane, and its speed as measured in the
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Schwarzschild frame of reference is ve, then we can set dr = 0, dθ = 0, θ =
π

2
and

rdφ = vedt.
Thus:

dτ 2c =

(
1− 2GM

c2r
− 2GMe

c2re
− v2e

c2

)
dt2 (5)

where Me is the mass of the Earth and re is the polar radius of the Earth.

dt =

(
1− 2GM

c2r
− 2GMe

c2re
− v2e

c2

)− 1
2

dτc (6)

We define year as one sidereal year = 31558149.76 seconds.

The clock will during one orbit around the Sun advance τc = 1 year, so the one orbit of
the Earth will in Schwarzschild time be:

T =

(
1− 2GM

c2r
− 2GMe

c2re
− v2e

c2

)− 1
2

year =
(
1 + 1.55 · 10−8

)
year (7)

If we assume that the trajectory of the the spaceship is a straight line along the axis
through the Sun and perpendicular to the ecliptic plane and its speed as measured in the
Schwarzschild frame of reference is v, then we can set dθ = 0, θ = 0, and dφ = 0.

Thus:

dτ 2 =

(
1− 2GM

c2r

)
dt2 − 1

c2
(
1− 2GM

c2r

) dr2 (8)

We set rs =
2GM
c2

= 2953.25 m and if we assume r is in the order of 1 AU, we have

rs
r
≪ 1 and we can use the approximation

1

1− x
≈ 1 + x when x ≪ 1.

dτ 2 ≈
(
1− rs

r

)
dt2 −

(
1 +

rs
r

) dr2

c2
(9)

Since the spaceship is moving at the speed v towards the Sun, we have dr = −v · dt

dτ 2 ≈
(
1− rs

r

)
dt2 −

(
1 +

rs
r

)
· v

2

c2
dt2 =

(
1− v2

c2

)
·

(
1−

1 + v2

c2

1− v2

c2

· rs
r

)
dt2 (10)

dτ ≈
√

1− v2

c2
·

√
(1−

1 + v2

c2

1− v2

c2

· rs
r
· dt (11)

Now we use the approximation:
√
1− x ≈

(
1− x

2

)
when x ≪ 1

dτ ≈
√

1− v2

c2
·

(
1−

1 + v2

c2

1− v2

c2

· rs
2r

)
dt (12)

Now we set r = −vt
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dτ ≈
√
1− v2

c2
dt+

 1 + v2

c2√
1− v2

c2

· rs
2v

 dt

t
(13)

During one orbit of the Earth, the spaceship moves from r = r0 + vT to r0 where r0 is
1 AU so that the approximation in equation (12) is valid. That means that to find τ we
must integrate equation (13) from t = − r0

v
− T to t = − r0

v
.

τ =

√
1− v2

c2
·
∫ − r0

v

− r0
v
−T

dt+
rs

(
1 + v2

c2

)
2v
√

1− v2

c2

·
∫ − r0

v

− r0
v
−T

dt

t
(14)

τ =

√
1− v2

c2
· T +

rs

(
1 + v2

c2

)
2v
√

1− v2

c2

· ln
(

r0
r0 + vT

)
(15)

With v = 0.9c we get:

τ = 0.4358898944 ·
(
1 + 1.550 · 10−8

)
year − 4.095 · 10−8year = 0.43588986 year (16)

This is very close to the same value as SR gave, the difference is 3 · 10−8 year
or ca 1 second. So SR is a good approximation in this case.
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