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1 What is time?

1.1 What is proper time?

In physics, time must be measurable. Proper time is what we measure with clocks. There
is no alternative to this definition. A proper clock must be independent of environmental
parameters which may vary where the clock is used. These parameters can be tempera-
ture, air pressure, acceleration, etc. Any clock may serve as a proper clock if the resolution
and precision is adequate for the purpose at hand, but the best clocks we have are atomic
clocks based on the frequency of the photon associated with a hyperfine transition. Only
atomic clocks will be adequate for our purpose.

SI has defined the time unit second like this:

The duration of 9,192,631,770 periods of the radiation corresponding to
the two hyperfine levels of the ground state of the caesium-133 atom.

In the following we will call clocks which use this definition of second an SI-clock. Note
that SI-clocks per definition always run at the rate 1 second per second.
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1.2 What is coordinate time?

Coordinate time is the temporal coordinate in a coordinate system. The coordinate time of
a coordinate system can be defined in several different ways, but we will use two different
coordinate times, the Schwarzschild coordinate time and the Coordinated Universal Time
(UTC).

1.2.1 Schwarzschild coordinate time

The Schwarzschild coordinate system is a non rotating spherical coordinate system. The
coordinate time of any spatial point is at any time the same, and the rate of the time is
such that an SI-clock at infinity would stay in sync (have the same rate).

Note that all clocks showing Schwarzschild coordinate time are synchronous in the non
rotating Schwarzschild coordinate system, they are not synchronous in the rotating Earth-
fixed coordinate system.

1.2.2 Coordinated Universal Time (UTC)

The coordinate system is still the Schwarzschild coordinate system, but with a different
temporal coordinate. We will call the UTC coordinate tutc. The coordinate time of any
spatial point is at any time the same, and the rate is such that a stationary SI-clock
on Earth’s geoid will stay in sync with UTC. Note that this SI-clock is moving in the
Schwarzschild coordinate system.

Note that all clocks showing UTC coordinate time are synchronous in the non rotating
Schwarzschild coordinate system, they are not synchronous in the rotating Earth-fixed
coordinate system.

The only difference between Schwarzschild coordinate time and UTC is the rate. One
might think that we could use equation (5) below to find this rate difference dtutc

dt
, but due

to the fact that the Earth is not a non rotating perfect sphere, but a rotating ellipsoid, it
is not quite that simple. A point on equator and a point on the North pole are both on the
geoid. If we set r equal to the equatorial radius of the Earth and v equal to the velocity of
a point on equator, we find dtutc

dt
= (1− 6.96552 · 10−10), but if we set r equal to the polar

radius of the Earth, and v = 0 we get dtutc
dt

= (1 − 6.97688 · 10−10). Since we know that
the rates of the clocks on the geoid are equal, this shows that equation (5) can not be used.

This problem is considered by Neil Ashby in [1], see equation (18) page 11.
According to Ashby: dtutc

dt
= (1− 6.96927·10−10).

We define: δutc = 6.96927·10−10

In the following we will use:

dtutc
dt

= (1− δutc) (1)
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2 Rate of clocks in circular orbit

2.1 Rate of clocks in circular orbit compared to Schwarzschild
time

The Schwarzschild metric is:

c2dτ 2 =

(
1− 2GM

c2r

)
c2dt2 − 1(

1− 2GM
c2r

)dr2 − r2
(
dθ2 + sin2 θ dφ2

)
(2)

where:

τ is the proper time
t is the Schwarzschild temporal coordinate
r is the Schwarzschild radial coordinate
θ is the colatitude (angle from north)
φ is the longitude
G is the gravitational constant
M is the mass of the Earth
c is the speed of light in vacuum

If we assume that the orbit of the clock is circular in the equatorial plane, we can set
dr = 0, dθ = 0, θ = π

2
and r dφ = r ω dt = v dt where v is the orbital speed of the clock.

The orbital speed will however be the same for all circular orbits with the same radius,
so the equation below is equally valid for all circular orbits.

dτ 2 =

(
1− 2µ

c2r
− v2

c2

)
dt2 (3)

where µ = G·M is the geocentric gravitational constant.

dτ

dt
=

√
1− 2µ

c2r
− v2

c2
(4)

A very good approximation is:

dτ

dt
≃ 1− µ

c2r(t)
− v(t)2

2c2
(5)

The difference between (4) and (5) is less than 10−25 for all r.

This equation is valid for any circular orbit. The term µ
c2r(t)

is called

the gravitational term, while the term v(t)2

2c2
is called the kinematic term.

Since the orbit is circular, r and v are constants, and we have:

v2

r
=

µ

r2
⇒ v2

2c2
=

µ

2c2r
(6)
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The rate of an SI-clock in circular orbit relative to the Schwarzschild coordinate time t is:

dτ

dt
= 1− 1.5µ

c2r
(7)

This is a real rate difference, but note that the SI-clock runs at its proper rate, one second
per second. It is the Schwarzschild coordinate time that is fast, and its seconds are shorter
than the SI-second.

2.2 Rate of clocks in circular orbit compared to UTC

The rate of SI-clocks in circular orbit relative to UTC is:

dτ

dtutc
=

1− 1.5µ
c2r

dtutc
dt

=
1− 1.5µ

c2r

1− δutc
(8)

A good approximation is:

dτ

dtutc
≃

(
1− 1.5µ

c2r

)
·(1 + δutc) ≃ 1− 1.5µ

c2r
+ δutc (9)

The difference between (8) and (9) is less than 10−17 for all r.

Let f be the rate of the rate of the clock in circular orbit and f0 the rate of the UTC:

∆f

f0
=

f − f0
f0

=

(
dτ

dtutc
− 1

)
≃ δutc −

1.5µ

c2r
(10)
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3 Rate of clock in the orbits of the GNSS satellites

GPS, Galileo and GLONASS

3.1 Common data

Geocentric gravitational constant µ = 3.986004418 · 1014 m3

s2

Speed of light in vacuum c = 299792458 m
s

Sidereal day = 86164.0905 s
Equatorial radius of the Earth R = 6378137 m

3.2 GPS

According to [3] the GPS orbit is circular with period half a sidereal day, p = 43082.04525 s

The radius of the orbit is then r = GM ·p2
4π2 = 26561763 m.

Equation (10) gives: ∆f
f0

= 4.4647 · 10−10

3.3 Galileo

According to [4] the Galileo orbit is circular with orbital radius r = 29600000 m.

Equation (10) gives: ∆f
f0

= 4.7218 · 10−10

3.4 GLONASS

According to [5] the GLONASS orbit is circular with altitude h = 19100000 m, the orbital
radius is then r = h+R = 25478137 m.

Equation (10) gives: ∆f
f0

= 4.3582 · 10−10

3.5 Geostationary satellite

The orbit of a geostationary satellite is circular with period a sidereal day, p = 86164.0905 s
The radius of the orbit is then r = GM ·p2

4π2 = 42164169 m.

Equation (10) gives: ∆f
f0

= 5.3915 · 10−10
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