Nonrelativistic contribution to Mercury’s perihelion precession
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We present here a calculation of the precession of the perihelion of Mercury due
to the perturbations from the outer planets. The time-average effect of each
planet is calculated by replacing that planet with a ring of linear mass density
equal to the mass of the planet divided by the circumference of its orbit. The
calculation is easier than examples found in many undergraduate theoretical
mechanics books and yields results which are in excellent agreement with more
advanced treatments. The perihelion precession is seen to result from the fact that
the outer planets slightly change the radial period of oscillation from the simple
harmonic period usually calculated for small displacements from equilibrium. This
new radial period therefore no longer matches the orbital period and the orbit
consequently does not exactly retrace itself. The general question of whether a
given perturbation will cause the perihelion to advance or regress is shown to have
the following answer: if a perturbing force is central and repulsive and also
becomes stronger as the distance from the force center increases, the perihelion

will advance. If the central perturbing force is attractive and also becomes
stronger as the distance from the force center increases, the perihelion will

regress.

I. INTRODUCTION

The precession of the perihelion of the planet Mercury
is a topic which arises frequently in discussions concerning
general relativity' since this precession is one of the three
direct observational foundations on which the theory rests.
It is shown in most mechanics books?-® that the simple
theory of planetary motion in a central inverse square
gravitational field predicts that the planetary orbits are
ellipses with the sun at one focus. In this simple theory, the
major axis of the ellipse remains fixed in space so that the
point of closest approach between the planet and the sun
(perihelion) does not move. Most authors of texts on me-
chanics,?# astronomy,?!? and relativity! mention that the
major axis of the orbit of Mercury is observed to shift in
space as a result of both perturbations from the outer
planets (by 532 arc sec per century) and from relativistic
effects (by 42.8 arc sec per century). Since the relativistic
effects are usually the major topic of interest, the planetary
perturbations are dealt with by simply quoting the result
of an unreferenced calculation and then considering the
relativistic calculation.

It is our purpose here to show that the component of the
precession of Mercury's perihelion due to outer planets can
be calculated easily at the undergraduate level. The com-
putation can be done as an example worked in class or—
with some hints—assigned as a homework problem. More
specific suggestions are included in Sec. V. Used in this way,
the calculation presented here provides an excellent exercise
in classical mechanics while simultaneously preparing the
student for material to be encountered in more advanced
COUTses,

Our asppmach follows closely that taken by Fowles® and
Symon,® both of whom consider the effect of a ring of
matter on a planetary orbit. However, both authors consider
the matter ring to be interior to the planet, making their
results inapplicable to the planet Mercury. We note in
passing that the addition of an interior ring is equivalent to
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4 quadrupole mass moment for the sun and causes a pre-
cession.

Intuitively, the justification for replacing a planet by a
ring of mass is that the force experienced by Mercury due
to the Sun is much greater than that due to the exterior
planets. Consequently, Mercury's deviation from its un-
perturbed orbit is very small during times on the order of
the period of an exterior planet’s orbit. Hence, a mass ring
is an approximate way of representing the time averaged
effect of a moving planet. While this may seem to be a
reasonably accurate approximation, one should bear in
mind that it neglects possible orbital resonance effects which
can occur if the period of one planet is a small rotational
fraction of the period of the other.

In the calculation which follows, we first calculate the
force field inside of a uniform ring of matter and in the plane
of the ring. This is equivalent to replacing each of the outer
planets by a ring whose linear mass density, A;, is

-\,‘ = M{,’ETYR;. (1)

where M is the mass of the outer planet and R, in the radius
of its orbit. We then consider the effect of this small per-
turbing force on the orbit of Mercury by examining the
period of oscillation of Mercury about a circular orbit. We
find that if Mercury is slightly disturbed from a circular
orbit, the period of oscillation about the average radius will
not be equal to the orbital period, resuiting in a slow pre-
cession of the perihelion.

II. GRAVITATIONAL FIELD OF A UNIFORM
RING

To begin, we approximate the time-averaged gravita-
tional field of each planet exterior to Mercury as a uniform
circular ring centered on the sun and in the plane defined
by the orbit of Mercury. Symbols are defined in Fig. 1. A
point mass m is on line ABC at a distance a from the center
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Fig 1. The symbols used

in calculating the gravi-
| tational forces on mass m,
located at distance a from
the center of a uniform
/ ring of linear mass density
o A, are illustrated here.

e A R
ds,
dm,

C of the ring of radius R. To compute the force acting on
m, consider breaking the ring up into differential mass el-
ements, dm; and dm;, located at angle o« from line AB as
shown in Fig. 1. If ds; and ds; are the arcs subtended by
differential angular element dc, and if a is small compared
to R,

dm; = Ads; = Mda, (2)

where { may be 1 or 2 and /; is the distance from m to the
ring. Newton’s law of gravitation gives us the net force on
i as

d) d
dF =Gm |57 - S22, 3
I 13

where [ is a unit vector from m to dm;. Substituting Eq. (2)
into (3) we find

dF = mG\ [Il_—h]fda_

'Fll'f‘_

From symmetry we see that only components of 4F along
line AB affect m since components perpendicular to AB will
cancel. Thus, we have a radial force, dF, given by

dF, = dF cosc.

If r is 2 unit vector in the radial direction, we may integrate
to obtain

F=# J"ﬂ mGA (I; . IIL] cosardex, (4)
- Iida

the integration limits having been chosen so that the entire
ring is considered. The « dependence of I} and f; can be
made explicit by applying the law of cosines which gives
us

R?= a2+ I} = 2al, cos(m — ).

Solution of this quadratic equation for [, yields

{) = —acus w + [e?cosa — (a? — R/,
The correct root may be selected by noting the physical
requirement for & = 0, /; must be equal to R — a; thus, we
select the positive value of the radical. Repeating this pro-
cedure for /3, we again must chose the positive radical re-
sulting in

I3 = a cosax + [a?cos’a — (a2 — RV

Substituting the expressions for /; and /; into Eq. (4), the
integral trivially reduces to

_ 2Gham =
F= R _azﬁ‘[_'ﬂoos aved cx.
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Doing the integration yields
F = [mGwAa/(R2 — a?)]F. (5)

Thus, the ring provides a force field equivalent to a central
repulsive force whose functional form is

F{r)alr/(R* = r)].

This small equivalent repulsive force will be added to the
much larger attractive force due to the sun.

IIl. ORBITAL CLOSURE

It is shown in most intermediate mechanics books%-7
that any attractive central force can produce a circular orbit
but that such orbits need not be either stable or closed. The
circular orbit is stable if a small radial displacement results
in oscillation about the original radial distance. The orbit
is closed if the period of radial oscillation is some rational
multiple of the orbital period so that the orbiting body
eventually retraces its own orbital path. Following Fowles.®
and Becker,” we note that if ®(r) is the total central force,
the equation of motion in the radial direction is

®(r) = m(F — 0%), (6)

where a dot implies time differentiation. The last term in
Eq. (6) has the physical interpretation of being a centrifugal
force. Since angular momentum J is a constant of the mo-
tion, we have

J=mr. (N
Solving for 0 and substituti ng into Eq. (6) yields
B(r) = m(F — Jim2i?), (8)

where the physical interpretation of ®(r) is that it is the
total applied force.

For the special case of a circular orbit of radius a, 1 is zero
and Eq. (8) reduces to

$(a) = —J¥/(ma?). )

If the planet is now disturbed slightly in the plane of its orbit
and normal to its initial path, it will oscillate about a. We
define X = r — g and express the radial equation of motion
in terms of X, Thus,

(X +a) = mX = J2’m~ (X + a)3
=mX — Pm~'a=3(1 + Xfa)7.

Since X/a is much less than unity, we may use the binomial
expansion on the term in parenthesis, retaining only first-
order terms. [f we expand the left-hand side in a Taylor
series about the point r = a and again retain only first-order
terms, we may rewrite our last equation as

$(a) + ¥ (a)X = mX — (J¥ma®)(1 — IX/a).
Here a prime denotes differentiation with respect to X. If
we substitute Eq. (9) into the above equation, we find

X+ (1m)[—(3/a)®(a) — ¥(a))X=0. (10)

-Note that this equation describes a simple harmonic oscil-

lator if the term in brackets is positive. (If the term is neg-
ative, we have an exponential solution and the orbit is un-
stable.) Thus, for stable orbits, the period of oscillation
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Table I. Planetary data and calculations.

Mass Orbit haf(R?=a?)
Planet Planet (102 kg) radius (10" m) A Maf{R? —a?) (R +a?) (R —a?
number name (Ref. 13) {Ref. 12) (10" kg m~") {kgm™?) (kgm=?)
| Mercury 0.3332 0.5791 ren
2 Venus 4.870 1.082 7.163 49,65 #9.51
3 Earth 5.976 1.496 6.158 19.35 26.17
4 Mars 0.6421 2279 0.4484 0,5345 0.6083
L] Jupiter 1899 7.783 38K 37.33 3175
6 Saturn 568.6 14.27 63.42 1.807 1.813
about r = g will be on Mercury, inspection of the next to last column of Table
- iz I shows that the planets beyond Saturn may be neglected.
T=2wW = (11)  These outermost planets are less massive and far more
_(3;"“)@_{“) - ®(a) distant than is Saturn. Substituting in numerical values, we

By definition, an apsis is a point in an orbit at which the
radius vector assumes an extreme value and the apsidal
angle ¥ is the angle swept out by the radius vector between
two consecutive apsides. The time required for Mercury to
sweep out this angle is clearly 7/2. Since r has the ap-
proximately constant value a, we can solve Eq. (7) for # and

write
&
mat|

Rearranging Eq. (9), we note that the last term in the above
equation is

| |
V=370

5 ( m ]m
"= Gla) B(a) - ¥'(a)

Jima? = [—®(a)/ma]'?,
so that
y =73+ a[P(a)/P(a)]]"' 2. (12)

If ®(a) describes the gravitational field due only to a point
mass sun,

Folr) = — GMomr~2, (13)

substitution of this into Eq. (12) yields the expected re-
sult

y=x (14)

In short, the orbit in a pure inverse square field may be
viewed as repeating itself exactly because the period of os-
cillation about a circular orbit happens to equal the orbital
period.

IV. COMPUTATIONS AND RESULTS

Using Eq. (5) we may now evaluate the forces acting on
Mercury due to the outer planets. Since the time averaged
effect is being approximated by rings and we have found
that the force is radial, Eq. (5) gives the radial outward
force due to the rings as

(15)

It will be recalled that m and a are the mass and orbital
radius of Mercury. Numerical values are shown in Table
1. Since the term following the summation sign in Eq. (15)
is a measure of the relative influence of each outer planet

3 a
F(a) = Gmm E:z.k.- —RE =

a?’
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find
F(a) = 7.587 X 10 N,
From Egq. (13), the force F due to the sun en Mercury is

Fo=—1318X 102N, (16)
The total applied force is
®(a) = Fo + Fla). (17)

Evaluating the derivative term required in Eq. (12), we
find

a®’(a) = a [Fy+ F'(a)].

Substituting Eqgs. (13) and (15) into the expression and
neglecting planets more distant than Saturn, we arrive at

a®’(a) = —2Fy + GmmaS, (18)
where we have defined
2
S= 3Nl (19)

where this function is the derivative of the term in Eq. (15).

Substituting the result into Eq. (12) yields
[=2Fp + GmmwaS]\-1/2

=3+ 120 T UMEA]
v Fo+ Fla) '

which may be rewritten
(14 [3F(a) + GrmaS],fFo]-uz (20)

V=T T (Flayral

We may use the binomial expansion for both the numerator
and demeninator of Eq. (20). Since F(a) <« Fp, and F(a)
is of the same order of magnitude as GrmaS, we may ne-
glect terms of higher order than first power of the ratio
F(a)/Fp. Eq. (20) may then be written

_ [, _3F(@) + GxmaS\(, . Fla)
¥ ﬁ[] 2Fy ](1+ Fo ]

If we carry out the indicated multiplication and neglect
second-order terms, we find

_ _Fla) Gmma
o fp- B0 )

Substituting numerical values gives us

Y=a(l +9.884 X 10~7).
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Since we have defined  as the angle between perihelion
and aphelion, it is reasonable to define the rate of precession
of the perihelion @ as

= -6
QEEQ 211'=1|'(1.9?7X 10-%)
P 87.969 days

where P is the sidereal period of Mercury. On converting
this to more conventional units, we find

@ = 531.9 arc sec,/century. (21)

The positive value indicates a perihelion advance. This re-
sult compares quite well with the results of more advanced
treatments' which show that the total dynamical precession
of 375 sec of arc per century consists of a planetary per-
turbation component of 532 sec of arc per century with a
relativistic contribution of 43 sec of arc per century.

V. DISCUSSION

If one inquires into the physical explanation of the pre-
cession phenomenon, several points of interest arise. Since
the outer planets have been replaced by equivalent solid
rings, the direction of their motion is unimportant. The
physical reason that the major axis of the orbit precesses
is that the addition of the small equivalent central repulsive
force described by Eq. (5) alters the period of oscillation
about a circular orbit so that the orbital and radial periods
are not quite equal, resulting in a slow precession. Note that
whether the perihelion point advances (moves in the same
direction as the planet) or regresses depends on whether the
ratio a®’/® in Eq. (12) is smaller or larger than —2, re-
spectively. An interesting discussion of the general question
of the conditions under which no precession will occur has
recently been given by Brown.'*

Replacing the total applied force with the gravitational
and perturbing terms, the condition for the perihelion ad-
vance becomes

alFg + F'(a))/[Fo + F(a)] < -2.
Resulting from Eq. (13),
Fy=2Grma=3 = —(2/a)Fy.
Making these substitutions,
[=2Fg + aF'(a))/[Fo+ F(a)] < -2
or that
aF'(a) + 2F(a) > 0.

(Note that the change in sign for the inquality results from
the fact that Fy is negative).
It is now evident that if a perturbing force is central and
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repulsive and also becomes stronger as the distance from
the force center increases, the perihelion will advance. If
the central perturbing force is attractive and also becomes
stronger as the distance from the force center increases, the
perihelion will regress.

We will make the following suggestions for using this
problem in various physics classes: Instructors in relativity
courses who wish to review the observational support for
general relativity can either present this example, assign it
as a problem, or reference it. In classical mechanics courses,
an instructor may wish to work or assign for reading the
example of precession due to a ring of matter interior to the
orbit of Mercury, while assigning this example as a home-
work problem or doing it as an example not presented in the
reading. We note that including examples of rings both
interior and exterior to Mercury provides students with a
thorough preparation for general relativity. A ring interior
toa planet gives rise to an r~* force which represents either
the quadrupole mass moment of the sun® or the general
relativistic correction term.* As discussed above, the exte-
rior ring problem permits computation of the classical
precession terms.
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