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§1. HE problem of determining the influence exerted
on electric and optical phenomenaby a translation,
such as all systems have in virtue of the Earth’'s

annual motion, admits of a comparatively simple solution, so

long as only those terms need be taken into account, which
are proportional to the first power of the ratio between the
velocity of translation » and the velocity of light ¢. Cages in

which quantities of the second order, 1e. of the order 2?/c?,

may be perceptible, present more difficulties. The first ex-

ample of this kind is Michelson’s well-known interference-
experiment, the negative result of which has led Fitzgerald
and myself to the conclusion that the dimensions of solid
bodies are slightly altered by their motion through the ether.

Some new experiments, in which a second order effect was
sought for, have recently been published. Rayleigh* and
Brace+ have examined the question whether the Harth’s
motion may cause a body to become doubly refracting. At
first sight this might be expected, if the just mentioned
change of dimensions is admitted. DBoth physicists, how-
ever, have obtained a negative result.

In the second place Trouton and Noble { have endeavoured
to detect a turning couple acting on a charged condenser,
the plates of which make a certain angle with the direction of
translation. The theory of electrons, unless 1t be modified
by some new hypothesis, would undoubtedly require the

* Rayleigh, Phil. Mag. (6), 4, 1902, p. 678.

+ Brace, Phil. Mag, (6), 7, 1904, p. 317.

1 Trouton and Nobla, Phil. Trans. Roy. Sce. Lond., A 202, 19083, p. 165.
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12 ELECTROMAGNETIC PHENOMENA

existence of such a couple. In order to see this, it will suffice
to consider a condenser with ether as dielectric. It may be
shown that in every electrostatic system, moving with a
velocity v,* there is a certain amount of ‘‘ electromagnetic
momentum,” If we represent this, in direction and magni-
tude, by a vector G, the couple in question will be determined
by the vector product +

[G.%] . ; i . (@)

Now, if the axis of z is chosen perpendicular to the con-
denser plates, the velocity v having any direction we like;
and if Uis the energy of the condenser, calculated in the
ordinary way, the components of G are given | by the follow-
ing formulee, which are exact up to the first order,

2Tz ou
S E = Yib G, = 0.

Substituting these values in (1), we get for the compon-
ents of the couple, up to terms of the second order,
20U 20U

cy ﬂyﬂzl e ? ﬁs@z, u-

These expressions show that the axis of the couple lies in
the plane of the plates, perpendicular to the translation. If
a is the angle between the velocity and the normal to the
plates, the moment of the couple will be U(v/c)® sin 2a; it
tends to turn the condenser into such a position that the
plates are parallel to the Earth’s motion.

In the apparatus of Trouton and Noble the condenser was
fixed to the beam of a torsion-balance, sufficiently delicate to
be deflected by a couple of the above order of magnitude.
No effect could however be observed.

§ 2. The experiments of which I have spoken are not the
only reason for which a new examination of the problems
connected with the motion of the Farth is desirable. Poin-

G, G,

* A vector will be denoted by a Olarendon letter, its magnitude by the cor-
responding Latin letter,

+ See my article : * Weiterbildung der Maxwell’schen Theorie. Electron-
entheorie,” Mathem. Encyclopidie, V, 14, § 21, a. (This article will be quoted
as “ M.E.”)

T ME,"§ 56, c
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caré * has objected to the existing theory of electric and optical
phenomena in moving bodies that, in order to explain Michel-
son’s negative result, the introduction of a new hypothesis
has been required, and that the same necessity may occur
each time new facts will be brought to light. Surely this
course of inventing -special hypotheses for each new experi-
mental result is somewhat artificial. It would be more
satisfactory if it were possible to show by means of certain
fundamental assumptions and without neglecting terms of
one order of magnitude or another, that many electromagnetic
actions are entirely independent of the motion of the system.
Some years ago, I already sought to frame a theory of this
kind.t I believe it is now possikle to treat the subject with
a better result. The only restriction as regards the velocity
will be that it be less than that of light.

§ 3. I shall start from the fundamental equations of the
theory of electrons.i Let D be the dielectric displacement in
the ether, H the magnetic force, p the volume-density of the
charge of an electron, v the velocity of a point of such a
particle, and F the ponderomotive force, i.e. the force,
reckoned per unit charge, which ig exerted by the ether on a
volume-element of an electron. Then, if we use a fixed
system of co-ordinates,

divD = p,divH = 0, |
curl H = é(an + pv),

12H SR )
cat’
F=D+%[\r.ﬂ]”

cad D = -

I shall now suppose that the system as a whole moves in
the direction of =z with a constant velocity », and I shall
denote by u any velocity which a point of an electron may
have 1n addition to this, so that

Ve = U 4 U, Uy = uy, Tz = U,

* Poincaré, Rapports du Congrés de physique de 1900, Paris, 1, pp. 22, 23.

t Lorentz, Zittingsverslag Akad. v. Wet., 7, 1899, p. 507; Amsterdam
Proo., 1898-99, p. 427.

t4M.E."§ 2.
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If the equations (2) are at the same time referred to axes
moving with the system, they become

diw D =p, div H=0,

2H, H, 1/ 2 1
e /RS ('[E — 'EI'B—I)D; + .;'.P[ﬂ = 'M:},'},

Ay 0% ¢

dH: AH: 1(2& H)

2 ax o\t~ Vaz/Dv t GPUw
Hy  dll: 172 0 )
2wy e\t D D e
D, W, 1(@_ a)

dy e e\ot ~ "oz s
Dz ol }(2!_ = ﬂ_?’_)];[

2z Py e\t /¥
oDy 2D _ 1(1‘ 3)
@y - o\at ~ Uas/D®

Fm = D:u -+ g_(uyHg = 'quy),

l(ﬂsz = 'H..-':Hs):

1
Fy=Dg“ETJH3+G

F. =D; + %‘!?Hy + %(HxHy - N-yHm].

§ 4. Weshall further transform these formuls by a change
of variables. Putting

o2

=8 . . . . ®

[

and understanding by ! another numerical quantity, to be
determined further on, I take as new independent variables

e =Bla, =1y, £=1z . ; . (4)
,
t=y-ﬁ%a. SR

and I define two new vectors D' and H’ by the formulse
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5Dz, Dy = g(]:)g, - %H,), D, = ‘g(m + 2m,),
H, = 38, Hy = 5(8, + ?D), B: = §(&, - ’n,),

for which, on account of (3), we may also write

Dy = DD, Dy = BEE(D'F + SH'_-;), Dz=ﬁﬂﬂ(D;z— gjﬂjﬂ) (6)

H, = H", Hy — BJE(H’F _ EDFE)? H:{:BE"E(H'E-I-ED}; J

As to the coefficient I, it is to be considered as a function
of v, whose value 1s 1 for v = 0, and which, for small values
of v, differs from unity no more than by a quantity of the
second order.

The variable ¢ may be called the “local time" ; indeed,
for 8 =1, I = 11it becomes identical with what T fnrmaly
denoted b}' this name.

If, finally, we put

il :
BgpEP =P S
By = w'y, Buy = 'y, Pus = u's, . . (8)

these latter quantities being considered as the components of
a new vector u’, the equations take the fnllowing form :—

aiv'n*=(1~3"'i?) GV H =0,

curl H' = 1(%- + pu' }, r (9)
'y . 1 3H
curl’ D" = —37" )
’ 1 L L L ¥ r ¥ K i )
F,»;=E*{D¢+E(uyHﬁ—qu a.r)+§'-_r(u;rfD-y+ w:D%)},
'EE ¥ 1 ’ ¢ ? r v ’ r
Fy:E{Dy.{-E[:qum_utz}_E’zuny}’ . [10)
EE L ll.r * [ ’ r v, F]
F‘tE{Dz-l-E"u;Hy_usz)*EiMIDz}- j

The meaning of the symbols div’ and curl’ in (9) is similar
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to that of div and curl in (2); only, the differentiations with
respect to z, y, # are to be replaced by the corresponding
ones with respect to z', ¥, 2.

§ 5. The equations (9) lead to the conclusion that the
vectors D’ and H' may be represented by means of a scalar
potential ¢’ and a vector potential A. These potentials
satisfy the equations *

1 % :

WAL IR Sayr = —F - .+ . (11
and in terms of them D’ and H' are given by
D'= - .:]-T-aa%_ grad’ ¢’ + ;—Jgrad’ A’z . (13)
H=cul'A . . . . (14
; i o? a? L
The symbol 7# is an abbreviation for 523 + e + 55,
and grad’ ¢’ denotes a vector whose components are
3 ¥
w” Dy’

The expression grad’ A’z has a similar meaning.

In order to obtain the solution of (11) and (12) in a
simple form, we may take z', ¢, 2’ as the co-ordinates of a
point P’ in a space S', and ascribe to this point, for each
value of ¢, the values of p/, u’, ¢', A, belonging to the corre-
sponding point P (2, y, 2) of the electromagnetic system.
For a definite value ' of the fourth independent variable, the
potentials ¢’ and A’ at the point P of the'system or at the
corresponding point P’ of the space §', are given by

¢ = ‘i—fr[[ﬁf]ds* Y ¢ 1)
: 1 [{ou7)5s,
A = m]‘[ﬂf‘ U T

‘M.E.,"” §§ 4 and 10, t+ Ibid., 88 5 and 10.
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Here dS’ 1s an element of the space 8, 7" its distance from
P, and the brackets serve to denote the quantity p’ and the
vector p'u’ such as they are in the element dS’, for the value
¢ — r'lc of the fourth independent variable,

Instead of (15) and (16) we may also write, taking into
account (4) and (7),

- 4;'[[?]@8, e )

the integrations now extending over the electromagnetic
system itself. It should be kept in mind that in these
formulae " does not denote the distance between the element
dS and the point (z, 4, 2) for which the calculation is to be
performed. If the element lies at the point (z,, ¥, #,), we
must take

r=L/Bz — &) + (g — y1)* + (2 — 5.

It is also to be remembered that, if we wish to determine
¢ and A’ for the instant at which the local time in P is £, we
must take p and pu’, such as they are in the element dS at
the instant at which the local time of that element is ¢ — »/c.

§ 6. Tt will suffice for our purpose to consider two special
cases, The first is that of an electrostatic system, ie a
system having no other motion but the franslation with the
velocity ».  In this case u’ = 0, and therefore, by (12), A" = 0.
Also, ¢’ is independent of #, so that the equations (11), (13),
and (14) reduce to

Vi = —p, )
D' = — grad ¢',f : . . (19)
H =0 )

After having determined the vector D’ by means of these
equations, we know also the ponderomotive force acting on
electrons that belong to the system. For these the formuls
(10) become, since u' = 0,

;E

T ’ e
F$=£ED:¢,1" =£Dy,F:=EDz . . (20}
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The result may be put in & simple form if we compare the
moving system 3, with which we are concerned, to another
electrostatic system 3’ which remains at rest, and into which
2 is changed if the dimensions parallel to the axis of = are
multiplied by 8/, and the dimensions which have the direction
of y or that of #, by l—a deformation for which (81, [,1) 1s an
appropriate symbol. In this new system, which we may
suppose to be placed in the above-mentioned space 8, we
shall give to the density the value p/, determined by (7), so
that the charges of corresponding elements of volume and of
corresponding electrons are the same in % and %', Then we
shall obtain the forces acting on the electrons of the moving
system X, if we first determine the corresponding forces in
3/, and next multiply their components in the direction of
the axis of # by ¥, and their components perpendicular to

2
that axis by % This is conveniently expressed by the
formula

R = (2, g, E)F{E'). @)

It is further to be remarked that, after having found D’ by
(19), we can easily calculate the electromagnetic momentum
in the moving system, or rather its component in the
direction of the motion. Indeed, the formula

a = ﬂ{n. H]dS
shows that

Gz = Y0, 1. - D.H)as.

Therefore, by (6), since H = 0

4
G. = 22| (,% + DS - %E (Dy* + D:7)dS’.  (22)

G.E

§ 7. Our second special case is that of a particle having
an electric moment, i.e. a small space 8, with a fotal charge

IpdS = 0, but with such a distribution of density that the
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integrals Ip;rds, Ipyds, IpzdS have values differing from 0.

Let £ pu, ¢ be the co-ordinates, taken relatively to a fixed
point A of the particle, which may be called its centre, and
let the electric moment be defined as a vector P whose com-
ponents are

P, = p&dS, P, = quds, P, = Ip;ds L. (23)
Then ’

ar, | dpP, ap,

e = [oueds, T = [puas, 4% = [puas . @4

Of course, if &, 9, { aretreated as infinitely small, w,, u,, u.
must be so likewise. We shall neglect squares and products
of these six quantities.

We shall now apply the equation (17) to the determination
of the scalar potential ¢ for an exterior point P (z, 9, 2), at a
finite distance from the polarized parficle, and for the instant
at which the local time of this point has some definite value
¥. In doing so, we shall give the symbol [p], which, in (17),
relates to the instant at which the local time in dS ist' - 7'/e,
a slightly different meaning. Distinguishing by #'; the value
of ' for the centre A, we shall understand by [p] the value
of the density existing in the element dS at the point
(€, m, £), at the instant ¢, at which the local time of A is
i = rofe

It may be seen from (5) that this instant precedes that
for which we have to take the numerator in (17) by

v{-’ ﬁ'(r - wf 8 hr »
S g +£c('5 syt EE)

units of time. In this last expression we may put for the
differential coefficients their values at the point A.
In (17) we have now to replace [p] by

1+ B3]+ e oy - )] e

where [g’: relates again to the time {,. Now, the value of #

for which the calculations are to be performed having been



20 ELECTROMAGNETIC PHENOMENA

chosen, this time #;, will be a function of the co-ordinates z,
y, # of the exterior point P. The value of [p] will therefore
depend on these co-ordinates in such a way that

oel ., 3.3_?"[3_9]
dx le dxLdt. ) B
by which (25) becomes
P ﬁp] el 2l “?_Dﬂ_]
[ (E a?,: +e Az )
Again, if henceforth we understand by »' what has above

been called 7', the factor % must be replaced by

L_s¥fly,  _ofl _?’.(l)
7~ r') Hﬁg(r) I TAY A

so that after all, in the integral (17), the element dS is
multiplied by
) , fokrie) 28l ale] 2 )

r ¢y’ | ot w 7 dy v vz

This is simpler than the primitive form, because neither
', nor the time for which the quantities enclosed in brackets
are to be taken, depend on z, y, z. Using (23) and re-

membering that f pdS = 0, we get

x g - i | l::
e EPE] - AR 30 2

a formula in which all the enclosed quantities are to be
taken for the instant at which the local time of the centre of
the particle is £ — 7'/e.

We shall conclude these calculations by introducing a new
vector P’, whose components are

P'm = EEP&, Pry = IP:J{. Prz = E’PSF - . (26)

passing at the same time to &', ¢/, 2’, ¢’ as independent vari-
ables. The final result is

v APL] 1 {a [Pe] , 2 [PY], 2 [1@}'

pr= dpcir’ o ap Loz’ o W' o w r
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As to the formula (18) for the vector potential, its trans-
formation is less eomplicated, because it contains the in-
finitely small vector u'. Having regard to (8), (24), (26), and
(5, I find
’ 1 fP]

A= dwor ot

The field produced by the polarized particle is now wholly
determined. The formula (13) leads to

e X B IP] 1 { 2 [Ph], 2 [PY] MPE]} a7
U= g T Yoy 7 tar e SO

and the vector H' is given by (14). We may further use the
equations (20), instead of the original formule (10), if we
wish to consider the forces exerted by the polarized particle
on a similar one placed at some distance. Indeed, in the
second particle, as well as in the first, the velocities u may be
held to be infinitely small.

It 18 to be remarked that the formul®e for a system
without franslation are implied in what precedes. For
such a system the quantities with accents become identical
to the corresponding ones without accents; also 8 = 1 and
Il = 1. The components of (27) are at the same time those
of the electric force which 1s exerted by one polarized particle
on another,

§ 8. Thus far we have used only the fundamental
equations without any new assumptions. I shall now suppose
that the electrons, which I take to be spheres of radius R in
the state of rest, have thewr dimensions changed by the effect
of a translation, the dimensions in the direction of motion
becoming Bl times and those in perpendicular directions I
times smaller.

In this deformation, which may be represented by
(1 i

Bl
its charge.

Our assumption amounts to saying that in an electro-
static system 3, moving with a velocity v, all electrons are
flattened ellipsoids with their smaller axes in the direction of

), each element of volume is understood to preserve
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motion. If now, in order to apply the theorem of § 6, we
subject the system to the deformation (8I, {, I), we shall
have again spherical electrons of radins R. Hence, if we
alter the relative position of the centres of the electrons in %
by applying the deformation (Bi, 1, ), and if, in the points
thus obtained, we place the centres of electrons that remain
at rest, we shall get a system, identical to the imaginary
system X', of which we have spoken in § 6. The forces in
this system and those in X will bear to each other the rela-
tion expressed by (21).

In the second place I shall suppose that the forces be-
tween uncharged particles, as well as those belween such
particles and elecirons, are influenced by a translation in
quite the same way as the electric forces in an electrostatic
system. In other terms, whatever be the nature of the
particles composing a ponderable body, so long as they do
not move relatively to each other, we shall have between the
forces acting in a system (%) without, and the same system
(%) with a translation, the relation specified in (21), if, as re-
gards the relative position of the particles, %' is got from %
by the deformation (8, I, I), or = from 3’ by the deformation

1.1 1
G2 1)

We see by this that, as soon as the resulting force is zero
for a particle in ', the same must be true for the correspond-
ing particle in 2. Consequently, if, neglecting the effects of
molecular motion, we suppose each particle of a solid body
to be in equilibrium under the action of the atfractions and
repulsions exerted by its neighbours, and if we take for
granted that thereis but one configuration of equilibrium, we
may draw the conclusion that the system X, if the velocity v
is imparted to it, will of itself change into the system %. In
other terms, the translation will produce the deformation

(& 1)

The case of molecular motion will be considered in § 12.

It will easily be seen that the hypothesis which was
formerly advanced in connexion with Michelson's experi-
ment, 1s implied in what has now been said. However,
the present hypothesis is more general, because the only
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limitation imposed on the motion is that its velocity be less
than that of light.

§ 9. We are now in a position to calculate the electro-
magnetic momentum of a single electron. TFor simplicity’s
sake I shall suppose the charge ¢ to be uniformly distributed
over the surface, so long as the electron remains at rest.
Then a distribution of the same kind will exist in the system

%’ with which we are concerned in the last integral of (22).
Hence

" L _ ) R _f‘_ﬂ E?ﬂ.r B g‘-’ﬁ‘_
I(D y + D)8 = SID s’ = G,H.J?E = R’
R
and

Bl = k)
i BWGEEB ﬂ'

It must be observed that the product Bl is a function of »
and that, for reasons of symmetry, the vector G has the
direction of the translation. In general, representing by v
the velocity of this motion, we have the vector equation

2

e
'ﬁ - mﬁz‘f . ¥ . - {gﬂ)

Now, every change in the motion of a system will entail
a corresponding change in the electromagnetic momentum
and will therefore require a certain force, which is given in
direction and magnitude by

I

dt
Strictly speaking, the formula (28) may only be applied
in the case of a uniform rectilinear translation. On account
of this eircumstance—though (29) is always true—the theory
of rapidly varying motions of an electron becomes very com-
plicated, the more so, because the hypothesis of § 8 would
1mply that the direction and amount of the deformation are
continually changing. It is, indeed, hardly probable that the
form of the electron will be determined solely by the velocity
existing at the moment considered.

Nevertheless, provided the changes in the state of motion
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be sufficiently slow, we shall get a satisfactory approximation
by using (28) at every instant. The application of (29) to
such a quasi-stationary translation, as it has been called by
Abraham,* is a very simple matter. Let, at a certain instant,
a, be the acceleration in the direction of the path, and a; the
acceleration perpendicular to it. Then the force F will con-
sist of two components, having the directions of these acce-
lerations and which are given by

F, = mya, and F, = mya,,
if
2 d(Bh) . :
My = R dp 047 = gragfl. . (30)

Hence, in phenomena in which there is an acceleration
in the direction of motion, the electron behaves as if it
had a mass m,; in those in which the acceleration is normal
to the path, as if the mass were my,. These quantities m,
and me may therefore properly be called the *longitudinal ™’
and “ transverse ~ electromagnetic masses of the electron. I
shall suppose that there is no other, mo * irue” or
“matertal ' mass.

Since 8 and [ differ from unity by quantities of the order
v?/c?, we find for very small velocities

ﬁﬂ.’
"= e R

This is the mass with which we are concerned, if there
are small vibratory motions of the electrons in a system
without translation. If, on the contrary, motions of this
kind are going on in a body moving with the velocity v in the
direction of the axis of z, we shall have to reckon with the
mass m,;, a8 given by (30), if we consider the vibrations
parallel to that axis, and with the mass m,, if we treat of
those that are parallel to OY or OZ. Therefore, in short
terms, referring by the index 3 to a moving system and by
3’ to one that remains at rest,

m(Z) = (d(ﬁﬂ}, B, ﬂl)m[i’) : . (31)

* Abraham, Wied. Ann., 10, 1903, p. 105.
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§ 10. We can now proceed o examine the influence of the
Earth’s motion on optical phenomena in a system of trans-
parent bodies. In discussing this problem we shall fix our
attention on the variable electric moments in the particles or
“ gtoms " of the system. To these moments we may apply
what has been said in § 7. For the sake of simplicity we
shall suppose that, in each particle, the charge is concentrated
in a certain number of separate electrons, and that the
“glastic” forces that act on one of these, and, conjointly
with the electric forces, defermine ifs motion, have their
origin within the bounds of the same atom.

I shall show that, if we start from any given state of
motion in a system without translafion, we may deduce from
it a corresponding state that can exist in the same system
after a translation has been imparted to it, the kind of corre-
spondence being as specified in what follows.

(@) Liet A'y, A's, A';, etc., be the centres of the particles in
the system without translation (%) ; neglecting molecular
motions we shall assume these points to remain at rest. The
system of points A;, A,, A, ete., formed by the centres of the
particles in the moving system Z, is obtained from A’;, A,

A’;, ete., by means of a deformation (,é? i—[ -3-1-) According to

what has been said in § 8, the centres will of themselves take
these positions A',, A';, A';, etc., if originally, before there
was a translation, they occupied the positions A,, A,, A,
ete.

We may conceive any point P’ in the space of the
system X' to be displaced by the above deformation, so that
a definite point P of X corresponds to it. For two corre-
sponding points P’ and P we shall define corresponding
instants, the one belonging to P, the other to P, by stating
that the true time at the first instant i1s equal to the local
time, as determined by (5) for the point P, at the second
instant. By corresponding times for two corresponding
particles we shall understand fimes that may be said to
correspond, if we fix our attention on the centres A" and A of
these particles.

(&) As regards the interior state of the atoms, we shall as-
sume that the configuration of a particle A in = at a certain
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time may be derived by means of the deformation (ﬁ%’ :, £1
from the configuration of the corresponding particle in X',
such as it is at the corresponding instant. In so far as
this assumption relates to the form of the electrons them-
selves, it is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the
system X', we have now completely defined a state of the
moving system X, The question remains, however, whether
this state will likewise be a possible one.

In order to judge of this, we may remark in the first place
that the electric moments which we have supposed to exist
in the moving system and which we shall denote by P, will
be certain definite functions of the co-ordinates z, y, z of the
centres A of the particles, or, as we shall say, of the co-
ordinates of the particles themselves, and of the time £. The
equations which express the relations between P on one hand
and z,y, z, ¢ on the other, may be replaced by other equations
containing the vectors P’ defined by (26) and the quantities
2, i, &, t defined by (4) and (5). Now, by the above as-
sumptions @ and b, if in a particle A of the moving system,
whose co-ordinates are z, y, 2, we find an electric moment P
at the time £, or at the local time t', the vector P’ given by
(26) will be the moment which exists in the other system at
the tgpe time ¢ in a particle whose co-ordinates are z', /), 7.
It Rppears in this way that the equations between P, z, v/,
', ¢’ are the same for both systems, the differenee being only
this, that for the system X" without translation these symbols
indicate the moment, the co-ordinates, and the true time,
whereas their meaning is different for the moving system, P,
z', i, &', t' being here related to the moment P, the ao-ordin-
ates x4, z and the general time ¢ in the manner expressed
by (26}, (4), and (5).

It hés already been stated that the equation (27) applies
to both systems. The vector D’ will therefore be the same
in & and X, provided we always compare corresponding
places and times. However, this vector has not the same
meaning in the two cases In X' it represents the electric
foree, in X it is related to this force in the way expressed by
(20). We may therefore conclude that the ponderomotive



H. A. LORENTZ 27

forces acting, in % and in ¥, on corresponding particles at
corresponding instants, bear to each other the relation deter-
mined by (21). In virtue of our assumption (b), taken in con-
nexion with the second hypothesis of § 8, the same relation
will exist between the * elastic " forces; consequently, the
formula (21) may also be regarded as indicating the relation
between the total forces, acting on corresponding electrons,
at corresponding instants.

It is clear that the state we have supposed to exist in the
moving system will really be possible if, in % and ¥, the pro-
ducts of the mass m and the acceleration of an electron are
to each other in the same relation as the forces, ie. if

ma(%) = (E*, g. g)maﬁﬁ':} ; ; . (32)
Now, we have for the accelerations
Pl i ,
H(E) = ('ﬁ":;s E‘gi B})a(z) : . ; (33}

as may be deduced from (4) and (5), and combining this with
(32), we find for the masses

m(2) = (8%, Bl, BOM(Z).

If this is compared with (31), it appears that, whatever be
the value of [, the condition 18 always satisfied, as regards the
masses with which we have to reckon when we consider
vibrations perpendicular to the translation. The only con-
dition we have to impose on [ is therefore

d(Blv) _ o
~a Pt
But, on account of (3),
d(Bv) __ a8
dv B
so that we must put
dl
&= 0, I = const.

The value of the constant must be unity, because we know
already that, for v = 0, 1 = 1.
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We are therefore led to suppose that the influence of a
translation on the dimensions (of the separate electrons and
of a ponderable body as a whole) is confined to those that
have the direction of the motion, these becoming B fimes
smaller than they are in the state of rest. If this hypothesis
is added to those we have already made, we may be sure that
two states, the one in the moving system, the other in the
same system while at rest, corresponding as stated above,
may both be possible. Moreover, this correspondence is not
limited to the electric moments of the particles. In corre-
gponding points that are situated either in the ether between
the particles, or in that surrounding the ponderable bodies,
we shall find at corresponding times the same vector D' and,
as is easily shown, the same vector H. We may sum up by
saying: If, in the system without translation, there is a state
of motion in which, at a definite place, the components of P,
D, and H are certain functions of the time, then the same
system after 1t has been put in mation (and thereby deformed)
can be the seat of a state of motion in which, at the corre-
sponding place, the components of P’, D', and H" are the same
functions of the local time.

There 1s one point which requires further consideration.
The values of the masses m, and m, having been deduced
from the theory of quasi-stationary motion, the question
arises, whether we are justified in reckoning with them in
the case of the rapid vibrations of light. Now it 1s found on
closer examination that the motion of an electron may be
treated as quasi-stationary if it changes very little during the
time a light-wave takes to travel over a distance equal to the
diameter. This condition is fulfilled 1n optical phenomena,
because the diameter of an electron is extremely small in com-
parison with the wave-length.

§ 11. It is easily seen that the proposed theory can
account for a large number of facts.

Let us take in the first place the case of a system withont
translation, in some parts of which we have continually
P=0,D=0H=0. Then, in the corresponding state for
the moving system, we shall have in corresponding parts (or,
as we may say, in the samne parts of the deformed system)
P'=0, D=0, H = 0. These equations implying P = 0,
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D =0, H = 0, asis seen by (26) and (6), it appears that those
parts which are dark while the system 1s at rest, will remain
so after it has been put in motion. It will therefore be im-
possible to detect an influence of the Farth’s motion on any
optical experiment, made with a terrestrial source of light,
in which the geometrical distribution of light and darkness is
observed. Many experiments on interference and diffraction
belong to this class.

In the second place, if, in two points of a system, rays of
light of the same state of polarization are propagated in the
sarae direction, the ratio between the amplitudes in these
points may be shown not to be altered by a translation.
The latter remark applies to those experiments in which the
intensities in adjacent parts of the field of view are compared.

The above conclusions confirm the results which I formerly
obtained by a similar train of reasoning, in which, however,
the terms of the second order were neglected. They also
contain an explanation of Michelson’s negative result, more
general than the one previously given, and of a somewhat
different form ; and they show why Rayleigh and Brace could
find no signs of double refraction produced by the motion of
the Harth.

As to the experiments of Trouton and Noble, their
negative result becomes at once clear, if we admit the hypo-
theses of § 8. It may be inferred from these and from our
last assumption (§ 10) that the only effect of the translation
must have been a contraction of the whole system of elec-
trons and other particles constituting the charged condenser
and the beam and thread of the torsion-balance. Such a
contraction does not give rise to a sensible change of
direction,

It need hardly be said that the present theory is put for-
ward with all due reserve. Though it seems to me that it
can account for all well-established facts, it leads to some
consequences that cannot as yet be put to the test of experi-
ment. One of these is that the result of Michelson’s experi-
ment must remain negative, if the interfering rays of light
are made to travel through some ponderable transparent
body.

Our assumption about the contraction of the electrons
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cannot 1n itself be pronounced to be either plausible or in-
admissible. 'What we know about the nature of electrons
is very little, and the only means of pushing our way farther
will be to test such hypotheses as I have here made. Of
course, there will be difficulties, e.g. as soon as we come to
consider the rotation of electrons, Perhaps we shall have to
suppose that in those phenomena in which, if there is no
translation, spherical electrons rotate about a diameter, the
points of the electrons in the moving system will deseribe
elliptic paths, corresponding, in the manner specified in § 10,
to the circular paths described in the other case.

§ 12. There remain to be said a few words about molecular
motion. We may conceive that bodies in which this has
a sensible influence or even predominates, undergo the same
deformation as the systems of particles of constant relative
position of which alone we have spoken till now. Indeed, in
two systems of molecules 3 and 3, the first without and the
second with a translation, we may imagine molecular motions
corresponding to each other in such a way that, if a particle
in 3" has a certain position at a definite instant, a particle in
3 occupies at the corresponding instant the corresponding
position, This being assumed, we may use the relation (33)
between the accelerations in all those cases in which the
velocity of molecular motion is very small as compared with v.
In these cases the molecular forces may be taken to be deter-
mined by the relative positions, independently of the velocities
of molecular motion. If, finally, we suppose these forces to
be limited to such small distances that, for particles acting
on each other, the difference of local times may be neglected,
one of the particles, fogether with those which lie in its
sphere of atiraction or repulsion, will form a system which
undergoes the often mentioned deformation. In virtue of
the second hypothesis of § 8 we may therefore apply to the
resulting molecular force acting on a particle, the equation
(21). Consequently, the proper relation between the forces
and the accelerations will exist in the two cases, if we sup-
pose that the masses of all particles are influenced by a trans-
lation to the same degree as the electromagnetic masses of the
electrons.

§ 18. The values (30), which I have found for the longi-
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tudinal and transverse masses of an electron, expressed in
terms of its velocity, are not the same as those that had
been previously obtained by Abraham. The ground for this
difference is to be sought solely in the circumstance that, in
his theory, the electrons are treated as spheres of invariable
dimensions. Now, as regards the transverse mass, the re-
sults of Abraham have been confirmed in a most remarkable
way by Kaufmann's measurements of the deflexion of
radium-rays in electric and magnetic fields. Therefore, if
there is not to be a most serious objection to the theory I
have now proposed, it must be possible to show that those
measurements agree with my values nearly as well as with
those of Abraham.

I shall begin by discussing two of the series of measure-
ments published by Kaufmann* in 1902, From each series
he has deduced two quantities n» and  the “ reduced "
electric and magnetic deflexions, which are related as follows
to the ratio y = v/c:—

y= ki Y@= a8

Here ¥ (v) is such a function, that the transverse mass is

given by
mﬂ -_ E,._‘P-rr 3 ~ - ¥ 3:]

e
whereas k; and &, are constant in each series.
It appears from the second of the formule (30) that my
theory leads likewise to an equation of the form (35); only .
Abraham'’s function  (y) must be replaced by

4 4 o
g =gt - "

Hence, my theory requires that, if we substitute this
value for ¥ (y) in (34), these equations shall still hold. Of
course, in seeking to obtain a good agreement, we shall be

justified in giving to k; and & other values than those of
Kaufmann, and in taking for every measurement a proper

value of the velocity v, or of the ratioy. Wniting sk, g ks

* Kaufmann, Physik, Zeitschr., 4, 1902, p. b5.
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and v for the new values, we may put (34) in the form

s sklg L. 36
and
== = _"'l == y .
1 -9 e . - (37)
Kaufmann has tested his equations by choosing for &,
such a value that, calculating y and %k, by means of (34), he
obtained values for this latter number which, as well as might
be, remained constant in each series. This constancy was
the proof of a sulfficient agreement.
1 have followed a similar method, using, however, some
of the numbers calculated by Kanfmann. I have computed
for each measurement the value of the expression

Ky = (1 - oipiphs, . . . (39)

that may be got from (37) combined with the second of the
equations (34). The values of 4 (y) and &, have been taken
from Kaufmann's tables, and for o I have substituted the
value he has found for v, multiplied by s, the latter coefficient
being chosen with a view to obtaining a good constancy of
(38). The results are contained in the tables on opposite
page, corresponding to the Tables IIT and IV in Kaufmann's
paper.

The constancy of &'; is seen to come out no less satis-
factorily than that of &, the more so as in each case the value
of s has been determined by means of only two measure-
ments. The coefficient has been so chosen that for these two
observations, which were in Table IIT the first and the last
but one, and in Table IV the first and the last, the values of

's should be proportional to thosa of &,

I shall next consider two series from a later publication
by Kaufmann,* which have been calculated by Runge % by
means of the method of least squares, the coefficients &,
and k, having been determined in such & way that the
values of 5, calculated, for each observed £, from Kaufmann’s
equations (34), agree as closely as may be with the observed
values of #.

* Kaufmann, Gitt. Nachr, Math, phys, Kl., 1908, p. 90.
+ Runge, ibid., p. 326.
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IIL s = 0933,

¥ Yyl kg 7. L
0851 2-147 1721 0794 2-246
0-T66 186 1736 0715 2-258
0727 178 1-725 0-678 2-256
0-6615 1-66 1727 0617 2-256
0-6075 1-595 1 655 0-667 2:175

IV. s = 0-954.

Y- W) Foge 7. Ky
0-963 3-28 8112 0-919 10-36
0-949 2-86 7499 0-905 9-70
0-933 273 T-46 0-5390 9-28
0-8E83 2431 8-32 0542 10-38
0-B60 2:195 809 0-820 10-15
0-830 2-06 813 0-792 10-28
0-801 1-96 813 0-764 10-28
0777 1-89 804 0-741 10-20
0-T52 1-88 802 0717 10-22
0-732 1-TB5 7-97 0698 10-18

I have determined by the same condition, likewise using
the method of least squares, the constants @ and b in the

formula
7' = al® + b,

which may be deduced from my equations (36) and (37).
Knowing @ and b, I find v for each measurement by means
of the relation

y = Jar

For two plates on which Kaufmann had measured the
electric and magnetic deflexions, the results are as follows
(p. 34), the deflexions being given in centimetres.

[ have not found time for caleulating the other tables in
Kaufmann’s paper. As they begin, like the table for Plate
15 (next page) with a rather large negative difference be-
tween the values of % which have been deduced from the
observations and calculated by Runge, we may expect a satis-
factory agreement with my formulee,
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Plata No. 15, a = 0-06489, b = 0+3089,

N ¥
¢ Cal g
Caloulated| v  [Caloulated| . leulated by
Observed. by R. Diff. by L Diff. R o
01495 | 00388 | (0404 - 16 0-0400 - 12 0937 0-061
0-.99 0-0548 056560 - 2 0-0552 - 4 0924 0018
02475 00716 00710 + B 040715 + 1 0930 {-5E81
0-296 00896 | Q-OB8T 4+ 9 00895 + 1 (889 0-R49
0 3435 0-1080 01081 - 1 01080 =10 0-847 0-803
03931 0-1290 C-1297 - 9 01305 R £ (-804 0-768
0-437 01524 0-1527 - 0-1532 - B 0763 O-7ey
04 25 01788 01777 + 11 01777 + 11 0524 0694
0-5265 | 0-2033 C-2039 - 6 0-2083 0 {-GBA O-660
Plate No. 19. a = 005867, b = 0-2591.
n b
J Calenlated z Caleulatad ; Calenlated by

01495 | 0-D404 0-0388 + 18 00379 + 25 0-990 0954
0199 0-0529 0527 + 2 00522 + T Q-969 0923
0-247 00678 00675 + 3 00674 + 4 0-939 0-8E8
0296 0-0R34 Q0842 - 8 00R44 - 10 0-902 0-849
0-34385 | 0-1019 | C-1022 - 3 0-1026 - 7 0862 | 0-R11
0-391 0-1219 01222 - 8 0-1226 -7 0822 0773
0-437 0-1429 | 01434 - 5B 0-1437 - B | 0782 0-736
04825 0-1660 | (1665 - b 01664 - 0'T44 | 0702
05265 01916 | 0-1906 + 10 0-1902 +14 | 0709 | 0671




